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Full understanding of gravity wave influences on the middle and upper atmosphere remains

an unresolved research topic. The goals of this work are two-fold. First, gravity wave sources

and propagation characteristics are explored using assimilated meteorological analyses from the

European Centre for Medium-Range Weather Forecasting (ECMWF) during the 2009 stratospheric

sudden warming (SSW). Second, gravity wave impacts on polar temperatures in the middle and

upper atmosphere are examined by modulating the gravity wave parameterization scheme in the

Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIME-GCM).

Gravity waves that are resolved in ECMWFT799 are validated with satellite and lidar observations.

ECMWF gravity wave potential energy density (GW-Ep) shows two enhancements, on Jan-

uary 5 and 15–22, prior to the peak 2009 SSW on January 23–24. The two gravity wave enhance-

ments are associated with the amplifications of planetary wave 1 and wave 2, respectively, and

there is a sudden decay of GW-Ep after the peak 2009 SSW. GW-Ep enhancements prior to the

SSW correspond well with the positive vertical gradients of total perturbation energy flux (FE), in-

dicating an in-situ energy source. The spatial and temporal distributions of gravity wave activities

correlate with those of the residual tendencies introduced by Snyder et al. [2009]. These results

suggest that the two peaks of GW-Ep are caused by the enhancements of the wave excitation in

the stratosphere due to the residual tendency forcings.

The sudden decay of gravity wave amplitudes correlates well with the suppressions of gravity

wave propagation from the troposphere to the stratosphere obtained from the ray-tracing model.

In addition, the vertical derivatives of FE decay after January 22. These results indicate that the

sudden decay of gravity waves after the wind reversal is likely due to suppressions of gravity wave
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propagation from the troposphere along with the reductions of in-situ gravity wave excitation by

the polar night jet.

The responses of the mesosphere and lower thermosphere (MLT) temperatures to gravity

waves during SSWs are investigated using TIME-GCM through modifying gravity wave parameters.

This study confirms that the height of gravity wave forcing region is mainly determined by gravity

wave amplitude and wavelength, and the vertical depth is closely tied to the spectral width of gravity

wave phase speed. The gravity wave forcings control the pattern and strength of residual circulation

and thereby the characteristics of MLT cooling and warming regions. The planetary wave forcings

in the MLT also affect the vertical depth and magnitude of MLT temperature anomalies through

further modifying the residual circulation. These planetary wave forcings are likely generated in-

situ by the gravity wave forcings at high latitudes. Therefore, the mechanisms of gravity wave

controlling the MLT temperature during a SSW are directly through gravity wave forcing and

indirectly through generating planetary waves in-situ.

Realistic gravity wave variations during the 2009 SSW obtained from ECMWF-T799 are

implemented in TIME-GCM. The following two simulations are examined. Case 1 includes the

enhanced gravity waves with longitudinal variations. Case 2 suppresses gravity waves with hor-

izontal wavelength longer than 150 km. Both cases improve the TIME-GCM simulations of the

MLT temperature responses to the 2009 SSW, indicating that realistic gravity wave variations have

impacts on the MLT thermal structure.
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Chapter 1

Introduction

The Earth’s atmosphere consists of four vertical layers: the troposphere, the stratosphere,

the mesosphere, and the thermosphere, that are categorized based on the thermal structure. Tra-

ditionally, atmospheric studies tend to be confined to one of the vertical layers. Recently, the

importance of global atmospheric coupling from the lower to the upper atmosphere began to gain

strong attention through the advancements of observational and computational resources. How-

ever, atmospheric coupling is not well represented in weather forecast models, climate models, or

space weather forecast models because of their limited model domains and the lack or poor rep-

resentation of atmospheric coupling mechanisms. One of the most important elements involved in

atmospheric coupling is the propagation of waves in the atmosphere. Planetary waves, tides, and

gravity waves, carry momentum and energy away from their source region. Through momentum

and energy transport, these waves couple the atmosphere both horizontally and vertically. Among

these atmospheric waves, gravity waves are the least understood component because small-scale

gravity waves with broad spectra are difficult to observe with current technologies. Owing to simpli-

fied gravity wave parameterizations in numerical models, the mechanisms of atmospheric coupling

through gravity waves are not well understood. In this dissertation, the in-depth analysis of grav-

ity wave source variations and their roles in driving atmospheric coupling will be conducted using

high resolution European Centre for Medium-Range Weather Forecasting (ECMWF-T799) and the

Thermosphere-Ionosphere-Mesosphere-Electrodynamic General Circulation Model (TIME-GCM).
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1.1 Gravity Waves

Gravity waves result from vertical displacements of air parcels in the stable layer and have

a buoyancy restoring force. Known gravity wave sources include flow over topography, convection,

atmospheric instabilities, and geostrophic adjustment [Fritts and Alexander, 2003; Sato, 2000].

Gravity wave amplitudes are small in the source regions where they are generated, but they grow

exponentially as they propagate upward because the atmospheric density decreases with increasing

altitude. The characteristics of gravity waves are described by the dispersion relation obtained

from the linear gravity wave theory [Fritts and Alexander, 2003]:

ωi =
N2k2 + f2

(
m2 + 1/4H2

)
k2 +m2 + 1/4H2

(1.1)

where ωi is the intrinsic frequency, N is the Brunt-Väisäilä frequency, k is the horizontal wavenum-

ber, m is the vertical wavenumber, H is the scale height, and f is the Coriolis parameter.

In the atmosphere, N is defined as N =
√

g
θ
∂θ
∂z , where θ is potential temperature, g is the

local gravitational acceleration, and z is geometric height. The scale height, H, is equal to kBT
Mg

where kB is the Boltzmann constant, T is temperature, and M is the mean molecular mass of dry

air. The intrinsic frequency can also be written as:

ωi = ω − ku0 (1.2)

where ω is the ground-relative frequency, and u0 is the background flow along the gravity wave

propagation direction. When gravity wave speeds and the background flow become equal, they

break and deposit momentum to the mean flow.

The forcing exerted on the mean flow induced by gravity wave breaking is called gravity wave

drag. The Eliassen-Palm theorem states that gravity wave drag accelerates the mean flow toward

the phase velocity of waves [Eliassen and Plan, 1961]. The Eliassen-Palm theorem can be written

as [Lindzen, 1990]:
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p′w′ = ρ (c− u0)u′w′ (1.3)

where p’, w ’, and u’ are wave perturbations in pressure, vertical wind, and horizontal wind along the

gravity wave propagation direction, respectively, c is the ground-relative horizontal phase velocity,

and u0 is the background flow along the wave propagation direction, p′w′ is the vertical energy

flux, u′w′ is the vertical flux of horizontal momentum, and ρ is atmospheric density. The theories

of the Eliassen-Palm and the critical layer explain the roles of gravity waves in determining the

atmospheric wind structure. Figure 1.1 shows the climatology of mean flow from the COSPAR

International Reference Atmosphere (CIRA) 1972 [Lindzen, 1981]. In general, the eastward jet

stream in winter hemisphere and the westward jet stream in summer hemisphere exist between the

stratosphere and the mesosphere and exhibit daily variability. Gravity wave drag weakens the jet

streams in the mesosphere as explained by the schematics in Figure 1.2. In the winter hemisphere,

westward gravity waves are dominant in the mesosphere because the eastward jet stream filters

eastward propagating gravity waves. The westward gravity waves break in the mesosphere, which

decelerates the eastward jet. The same situation occurs in the summer hemisphere where both the

mean flow and gravity wave directions are reversed. These zonal wind changes induced by gravity

wave breaking alter the meridional and vertical circulation due to the conservation of angular

momentum. Changes in the vertical flow result in changes to the thermal structure.

In addition to gravity wave drag, temperature perturbations induced by gravity waves are

important for polar stratospheric clouds (PSCs) and polar mesospheric clouds (PMCs) [Jensen and

Thomas, 1994; Gerrard et al., 2004; Innis and Klekociuk, 2006; Chu et al., 2009; Alexander et

al., 2011]. PSCs occur in the winter stratosphere and are required for catalytic ozone destruction

that is responsible for the Antarctic ozone hole [Solomon, 1999; Tolbert and Toon, 2001]. PMCs

appear in the summer mesopause region where temperature is the coldest in the Earths atmosphere.

PMCs are sensitive to the changes in mesospheric water vapor and temperature [Thomas, 1991].

The increased concentration of CH4, which oxidizes to form water vapor in the mesopause region
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Figure 1.1: CIRA climatology of zonal mean flow. This figure is taken from Lindzen [1981]

Figure 1.2: Schematics depicting the influence of gravity wave drag on the wind structure during
summer and winter. This Figure is from Kim et al. [2003]
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[Thomas et al., 1989], and CO2 which possibly cools the middle and upper atmosphere [Portman

et al., 1995], could lead to the increase of PMC brightness and occurrence frequency [Thomas,

1996]. Thus, PMCs provide a potential indicator of global climate change, which has fueled the

intensive study of PMCs in recent years. Both PSCs and PMCs are very sensitive to temperature,

and temperature perturbations induced by gravity waves alter cloud properties and occurrence

frequency [Jensen and Thomas, 1994; Gerrard et al., 2004; Chu et al., 2009]. Therefore, gravity

waves are a key element in establishing the large-scale circulation, influencing the thermal structure

thus cloud occurrences and properties, and act to couple different vertical layers of the atmosphere.

Current Status and Problems in Gravity Wave Parameterization

Despite the important role of gravity waves in the atmosphere discussed above, small-scale

gravity waves cannot be resolved in general circulation models (GCMs) because their wavelengths

are usually smaller than (or equal to) the horizontal resolution in the model. In order to account

for gravity wave effects, enormous efforts have been put into the development of gravity wave pa-

rameterization schemes with various dissipation mechanisms in GCMs [e.g., Lindzen, 1981; Holton,

1982; McFarlane, 1987; Hines, 1991; Alexander and Dunkerton, 1999; Richter et al., 2010]. One

of the severe problems in gravity wave parameterization schemes is the representation of gravity

wave source properties. According to McLandress and Scinocca [2005], GCM simulations are more

sensitive to the gravity wave source properties than to detailed dissipation mechanisms in gravity

wave parameterization schemes. Most of these classic parameterizations require to specify gravity

wave source spectra and distributions. Unfortunately, most GCMs employ simplified gravity wave

spectra and distributions of wave sources without much variations, leading to large uncertainties

in GCMs.

The knowledge of gravity wave source properties is very limited because tracing gravity

waves back to their source regions is extremely difficult using a single observational instrument or

even with a high-resolution model. Recently, Richter et al. [2010] implemented in WACCM the

physically based gravity wave parameterization scheme that launches gravity waves associated with
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the occurrences of deep convection, frontal system, and flow over topography. The new scheme and

the considerations of turbulent mountain stress improve the occurrence frequency of stratospheric

sudden warmings (SSWs) in WACCM.

Despite the recent progress, the in-situ wave sources related to the tropospheric jets and

the stratospheric jets are not included in the gravity wave parameterization scheme developed by

Richter et al. [2010]. The in-situ gravity wave sources tend to be overlooked due to the difficulty of

separating in-situ generated gravity waves from waves originating in the troposphere. The in-situ

gravity wave excitations by unbalanced flow related to jet structures are normally indicated by

the intensity of unbalanced flow. The Lagrangian Rossby number [Koch and Dorian, 1988; Zhang

et al., 2000; Zhang and Koch, 2000; Liu and Meriwether, 2004], the residual of nonlinear balance

(∆NBE) [Zhang, 2004; Wang et al., 2007], potential vorticity (PV) inversions [Zhang et al., 2000]

have been used to identify the in-situ gravity wave sources related to the unbalanced flow, such

as geostrophic adjustment [O’sullivan and Dunkerton, 1995], spontaneous emissions [Ford, 2000],

generalized geostrophic adjustment [Zhang, 2004], spontaneous responses [Snyder et al., 2007; 2009].

However, unlike orographic gravity waves identified by well-known topographical features, the in-

situ gravity wave excitations by unbalanced flow are still difficult to determine, resulting in the lack

of in-situ sources in GCMs.

Although it is difficult to determine the in-situ sources, there are observational evidences in-

dicating the importance of the in-situ gravity wave generation related to the jet structures and un-

balanced flow [e.g., Uccellini and Koch, 1987; Sato et al., 1994; Yamashita et al., 2009; Plougonven

et al., 2003; Guest et al., 2000; Hei et al., 2008; Yoshiki and Sato, 2000]. Uccellini and Koch [1987]

observed gravity waves generated by geostrophic adjustment associated with the tropospheric jet,

and these waves were always found in the exit region of the jet streak. Yoshiki and Sato [2000]

showed downward propagating gravity waves in the stratosphere and the troposphere at Syowa sta-

tion in Antarctica, indicating that the in-situ wave sources were above their observational heights.

Yamashita et al. [2009] reported upward phase progressions of gravity waves (i.e., possibly down-

ward propagating gravity waves) at both the South Pole and Rothera stations in Antarctica. These
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results also suggested that gravity waves might be generated in-situ by adjustments of unbalanced

flow above their observational heights of 30-45 km [Yamashita et al., 2009]. Sato and Yoshiki [2008]

found downward propagating of gravity waves that correlated well with the unbalanced flow indi-

cator of ∆NBE. In addition to the ground-based observations, Hei et al. [2008] showed correlations

between gravity wave activity and the structure of the stratospheric jet using the CHAllenging

Mini-Satellite Payload (CHAMP/GPS). They argued that the in-situ gravity wave sources related

to the stratospheric jet were generally more important than orographic sources in the polar regions.

Idealized simulations of gravity waves generated by the adjustments of the tropospheric jets sug-

gested that adjustments of unbalanced flows could excite gravity waves with various spectra from

high frequency to inertia gravity waves [O’sullivan and Dunkerton, 1995; Zhang, 2004; Snyder et

al., 2007, 2009; Wang et al., 2007, 2010].

As discussed above, observations demonstrate the existence of in-situ gravity wave sources

and their importance. However, such wave sources are not considered in most gravity wave pa-

rameterization schemes. It is thus necessary to investigate the in-situ gravity wave excitation

mechanisms due to the unbalanced flow and their impacts on atmospheric dynamics and coupling.

The in-situ gravity wave sources related to the polar night jet can be prominent when the polar

vortex is highly disturbed, such as during SSWs. Hence, this dissertation focuses on gravity waves

during SSWs to study in-situ wave generations and their impacts.

1.2 Stratospheric Sudden Warming

A SSW is one of the most dynamic phenomena in the stratosphere. A SSW causes extreme

disturbances in the polar winter stratosphere with sudden increases in temperature and zonal wind

reversals. SSWs are categorized into the major and minor SSWs based on the magnitudes of

temperature and wind anomalies. According to the World Meteorological Organization (WMO),

if the temperature increases poleward from 60◦ and the zonal mean zonal wind reverses from the

eastward to the westward at 10 hPa, then it is called a major SSW. Temperature increases without

the wind reversals are defined as minor warmings.
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The first SSW was observed by Scherhag [1958; 1960] using radiosondes over Berlin. Since

then, the major SSWs have been observed about six times per decade in the Northern Hemisphere

(NH) but only once in the Southern Hemisphere (SH) in 2002 [Charlton et al., 2007]. Minor SSWs

occur more often both in the NH and SH. The causes of SSWs are widely accepted as amplifications

of planetary waves and their interactions with the mean flow as they propagate upward [Matsuno,

1971]. Figure 1.3 (taken from Andrews et al. [1987]) is a schematics that shows the meridional and

vertical motions induced by breaking planetary waves during a SSW. This schematic is based on

the theory proposed by Matsuno [1971]. The dissipations of westward propagating planetary waves

accelerate the mean flow westward, and the westward acceleration causes poleward flow due to

the Coriolis force. The poleward flow further induces the downward and upward flow, resulting in

the adiabatic warming in the stratosphere and the adiabatic cooling in the mesosphere. Planetary

waves in the SH are usually weaker than those in the NH due to the less land-see contrast and the

relatively featureless topography, explaining why SSWs occur more often in the NH than in the SH.

Figure 1.3: The schematics of physical mechanisms of occurrence of SSWs from Andrews et al.
[1987] based on Matsuno [1971]. (left) planetary wave activity (dashed line), divergence of EP flux
(heavy solid), and acceleration of mean flow (thin solid). (right) divergence of EP flux (shaded
region), acceleration of mean flow (thin contour), residual circulation (arrow), warming (W), and
cooling (C).
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Occurrences of SSWs are also affected by the QBO and the solar cycle [e.g., Andrews et al., 1987].

During the westward phase of QBO, the winter polar region tends to be warmer and more disturbed

than those during the eastward phase of QBO [Holton and Tan, 1980]. Consequently, SSWs occur

more frequently during the westward phase of QBO [Labitzke, 1981; Holton and Austin, 1991].

Solar cycle influences on SSWs are also reported [Labitzke, 1987; Gray et al., 2004] whereby SSWs

are more common during solar maximum.

Atmospheric Coupling Associated With Stratospheric Sudden Warmings

Although SSWs only occur in the polar winter stratosphere, SSWs have significant impacts

globally from the troposphere to the thermosphere as follows: (1) there are cooling in the mesosphere

and the warming in the lower thermosphere at high latitudes in the winter hemisphere [Holton,

1983; Labitzke, 1972; Liu and Roble, 2002; Siskind et al, 2005], (2) there are cooling in the mid-

latitude thermosphere and E×B drift and total electron content (TEC) anomalies in the equatorial

ionosphere [Goncharenko and Zhang; 2008; Chau et al., 2009; Goncharenko et al. 2010; Liu et al.,

2010], (3) there are warming of summer mesopause and reductions of brightness and occurrence of

PMCs at high latitudes [Karlsson et al., 2007, 2009], (4) there are cooling in the tropical stratosphere

[Fritz and Soules,1970], (5) there are enhancements of tropical convection by altering the Brewer-

Dobson circulation [Eguchi and Kodera, 2007], and (6) there is downward propagation of warming

anomalies into the troposphere [Bladwin and Dunkerton, 2001; Sun and Robinson, 2009; Kuroda,

2008]. Figure 1.4 summarizes the global effects due to SSWs.

A key to vertical atmospheric coupling from the winter stratosphere to the winter thermo-

sphere is gravity waves [Holton, 1983; Liu and Roble, 2002]. Figure 1.5 explains the changes in

gravity wave propagation due to background wind reversals, and Figure 1.6 summarized the changes

in temperatures due to gravity waves and planetary waves during SSWs. Under the typical win-

ter condition (before SSWs), the strong eastward jet exists in the polar winter stratosphere. The

eastward jet allows westward gravity waves to propagate up to the mesosphere while the eastward

gravity waves are filtered. During SSWs, the eastward polar night jet is reversed to be westward
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Figure 1.4: Schematics illustrating global impacts due to SSWs.
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by the interactions between the mean flow and planetary waves, and then the background wind

conditions become westward. Because of the zonal winds during SSWs, the eastward gravity waves,

instead of the westward gravity waves, propagate to the mesosphere. The changes in filtering of

gravity waves lead to changes in the direction that gravity waves accelerate the zonal flow in the

MLT region. The changes in gravity wave forcings from westward to eastward at mid- to high-

latitudes induce an equatorward flow in the upper mesosphere. Such flow drives upward flow in

the mesosphere and downward flow in the lower thermosphere, resulting in adiabatic cooling and

warming in the mesosphere and the lower thermosphere, respectively [Liu and Roble, 2002].

Other essential features to understand the mechanisms of vertical coupling during SSWs

are the downward progression of temperature and wind anomalies from the mesosphere to the

stratosphere [Hoffman et al., 2002, 2007; Dowdy et al., 2004; Bhattcharya et al., 2004]. Hoffman et

al. [2002, 2007] showed the wind reversal in the mesosphere observed ∼6 days before the 2006 SSW.

Further, for 51 SSWs between 1989 ad 2000, Hoffman et al. [2007] report that 53% of the time there

are concurrent reversals in mesospheric zonal winds. Dowdy et al. [2004] also found that zonal wind

reversal occurred in the mesosphere about one week earlier than that occurred in the stratosphere.

The wind reversal was also observed by Michelson Interferometer at Resolute Bay (74.9◦N, 94.9◦W)

during the peak warming period associated with cooling and warming [Bhattacharya et al., 2004].

Liu and Roble [2005] successfully simulated the downward progression of wind anomalies from the

mesosphere to the stratosphere using TIME-GCM for the 2002 SSW simulation in the SH. Their

simulated wind reversal started in the mesosphere and gradually progressed downward during the

episode of several minor warmings, and then the wind reversal reached 10 hPa pressure level during

the peak warming. The downward progression of zonal wind anomalies during SSWs are directly

tied to the downward movement of the zonal mean zero-wind line [Coughlin and Tan, 2005; Liu

and Roble, 2005]. The zero-wind line is a critical layer for the stationary planetary waves. The

locations of mean flow and planetary wave interactions descend with the downward progression of

the zero-wind line height. The height of the zero-wind line is strongly controlled by gravity wave

forcings [e.g., Sassi et al., 2002], and thus gravity waves can play an important role in establishing
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Figure 1.5: Schematics of gravity wave propagation and forcing under the typical winter conditions
and SSW conditions. The x-axis and y-axis represent the horizontal axis from the west to the east
and altitude, respectively. The black line is the typical zonal wind, the red thin arrows represent
gravity waves, and the red block arrows show the direction of gravity wave forcings.

Figure 1.6: Latitude-altitude plot of zonal mean zonal wind, meridional wind, vertical wind, and
temperature anomalies during a SSW from Liu and Roble [2002]. The orange arrow shows the
amplified planetary waves, the blue arrow represents the vertical propagation of eastward gravity
waves, and white arrows depict the induced meridional and vertical flow due to gravity waves and
planetary waves.
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the adequate height of the zero-wind line for planetary wave and mean flow interactions.

Problems in Atmospheric Coupling Study

While gravity waves are know to influence atmospheric coupling during SSWs [Holton, 1983;

Liu and Roble, 2002], the understanding of gravity wave variations and their mechanisms during

SSWs was insufficient to gain a compete picture of atmospheric coupling. Previous studies showed

significant variations of gravity waves associated with SSWs [Whiteway and Carswell, 1994; Duck

et al., 1998; Vankat Ratnam et al. 2004; Wang and Alexander, 2009; Thurairajah et al., 2010].

Enhancement and reduction of gravity waves have been observed to be dependent on the relative

locations to the edge of polar vortex, the SSW type, and the instrument capabilities. These

gravity wave variations associated with SSWs were mainly explained by the changes in gravity

wave propagation due to the modulation of the background flow. Although the distorted polar

vortex during SSWs can create conditions favorable for the in-situ gravity wave generations by the

unbalanced flow, studies of such gravity wave source variations are still missing.

1.3 Research Objective

This dissertation aims to investigate (1) the gravity wave variation during SSWs, (2) the

physical mechanisms causing such gravity wave variations along with the generation mechanisms

of gravity waves, and (3) the impacts of the gravity wave variations on the upper atmosphere. The

following scientific questions will be answered:

(1) How do gravity waves vary during the 2009 SSW in the stratosphere and lower

mesosphere?

Observations of gravity wave activities during SSWs are still rare and existing observations

sometimes show conflicting results. In order to obtain a comprehensive picture of gravity

wave variations associate with SSWs, the high-resolution ECMWF-T799 data is used to
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investigate the spatial, temporal, and spectral dependence of gravity wave variablity. Ac-

quiring a complete picture of the gravity wave variations is a necessary step to understand

the physical mechanisms behind these variations.

(2) What are the physical mechanisms causing these gravity wave variations during

the 2009 SSW?

Studies of gravity wave variations associated with SSWs have been attributed to the changes

in gravity wave propagation. However, the stratospheric polar vortex is highly disturbed

due to the planetary wave growth associated with SSWs. It is thus possible that the in-situ

gravity wave sources related to the polar night jet enhance during SSWs in concurrence with

the changes in gravity wave propagation. This dissertation examines both the changes in

gravity wave propagation and sources, and their relative contributions to gravity wave vari-

ability by utilizing the high-resolution ECMWF-T799 data and the Gravity-wave Regional

Or Global Ray Tracer (GROGRAT) models.

(3) What are the impacts of gravity waves on the MLT during SSWs?

Most GCMs employ a simplified source function in their gravity wave parameterization

schemes. It limits our knowledge of the role of gravity waves in atmospheric coupling. In this

study, the representation of gravity waves in the TIEM-GCM is improved by incorporating

the gravity wave variations obtained from ECMWF-T799 analysis. Utilizing the improved

TIME-GCM, gravity wave influences on the characteristics and downward progression of

MLT temperature anomalies and the elevated stratopause are then examined.

1.4 Outline of Thesis

This dissertation consists of seven chapters. Following the introduction, Chapter 2 provides

a description of the ECMWF and detailed validations of gravity waves resolved in ECMWF-T799.

Gravity waves resolved in ECMWF-T799 are validated with ground-based lidar observations and

satellite observations. Chapter 3 summarized the spatial, temporal, and spectral dependences of
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gravity wave variations during the 2009 SSW revealed by ECMWF-T799. Chapter 4 discusses the

physical mechanisms causing the gravity wave variations during the 2009 SSW. Chapter 5 explores

gravity wave impacts on the characteristics and downward progression of temperature and wind

anomalies through sensitivity study. In Chapter 6, gravity wave variations obtained from ECMWF-

T799 are implemented in TIME-GCM to study impacts of realistic gravity wave variations on MLT

dynamics. Finally, this dissertation is concluded with summary and future research in Chapter

7.
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Validations of Gravity Waves Resolved in ECMWF-T799

The version of ECMWF-T799 with a horizontal resolution of 25 km has the capability of

partially resolving meso-scale gravity waves. Utilizing the high-resolution ECMWF-T799, gravity

wave variations and their physical mechanisms are investigated in this dissertation. This chapter

introduces ECMWF-T799 and demonstrates the capability of ECMWF-T799 through validating

gravity waves resolved in ECMWF-T799 with ground-based lidar data and satellite observations

along with the high-resolution models of the the University of Oklahoma’s Advanced Regional

Prediction Systems (ARPS) and the Goddard Earth Observing System Model, Verison 5 (GEOS-

5) assimilated data.

2.1 ECMWF

ECMWF model provides the assimilated atmospheric data. Wind, temperature, humid-

ity, ozone, and surface pressure are provided by the four dimensional data assimilation system.

ECMWF is a hydrostatic spectral model solving non-linear equations. ECMWF employs the hy-

brid vertical coordinate and the reduced Gaussian horizontal grid. The hybrid coordinate consists

of terrain following coordinate below ∼70 hPa and constant pressure level above ∼70 hPa as shown

in Figure 2.1. In the reduced Gaussian grid, the number of grid points along longitudes is reduced

towards the poles.

The version of T799 from May 2008 to April 2010 is open to public for Year of Tropical

Convection (YOTC) projects. The YOTC version of ECMWF-T799 has the horizontal resolution
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of 0.25◦ × 0.25◦ (latitude × longitude) and 91 vertical levels from surface to 0.01 hPa (∼80 km).

The horizontal resolution is ∼25 km, and ECMWF-T799 is capable of resolving gravity waves

with horizontal wavelength longer than 100–150 km. The vertical resolutions are ∼0.4 km in the

lower stratosphere and ∼1–2 km in the stratosphere [Wu and Eckermann, 2008]. As discussed in

Wu and Eckermann [2008], ECMWF-T799 has limitations of resolving gravity waves with vertical

wavelength less than ∼4-6 km in the stratosphere. The model time step for ECMWF-T799 is 12

minute. ECMWF-T799 uses the Rayleigh friction above 9.9 hPa and an orographic gravity wave

parameterization. Recently, ECMWF replaced the Rayleigh friction by nonorographic gravity wave

parameterization and upgraded their model resolution to ∼15 km as T1279 version. There are two

types of ECMWF data available, analysis and forecast versions. The analysis version is assimilated

data combined with forecast data similar to the initial condition of forecast version. Analysis

version provides the 6-hourly output (0:00, 6:00, 12:00, and 18:00 UT) with both the pressure

vertical levels and the model vertical levels. The model levels are raw vertical coordinates with 91

levels. The pressure levels consist of 25 vertical levels from 1000 hPa to 1 hPa interpolated from

the model levels. The differences between the vertical resolutions of the model and pressure levels

are shown in Figure 2.2. For the forecast version, the model is initialized at 12 UT every day, and

Figure 2.1: Schematics of ECMWF model level.
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(a) (b)

Figure 2.2: (a) The comparison between the model level and pressure level from 1000 hPa to 0.01
hPa. (b) the zoom-in version of comparison from 100 hPa to 1 hPa.

hourly forecast outputs from 12 h to 36 h are provided by ECMWF. In this study, the analysis

version is mainly used for gravity wave study because the high vertical resolution in analysis version

is suitable for gravity wave study (91 vertical level vs. 25 vertical level). The hourly forecast data

is used for studying the flow evolution. The hourly forecast data are available from January 7 to

January 25 for this study.

2.2 Background of Gravity Waves in ECMWF

Although ECMWF has been used for atmospheric sciences by providing realistic background

wind and temperature, studies on their resolved gravity waves are still rare. Plougonven and

Teitelbaum [2003] and Hertzog et al. [2001, 2002] used ECMWF-T511 and T319 and compared

with radiosonde and super balloon observations. Plougonven and Teitelbaum [2003] concluded that

the location and timing of gravity wave occurrences in ECMWF-T511 agreed with radiosonde data,

though the characteristics of gravity waves in ECMWF-T511 did not match with radiosonde results.

The discrepancies in wave characteristics might be caused by the model resolutions [Plougonven

and Teitelbaum, 2003]. On the other hand, Alexander and Teitelbaum [2007] showed a case study

of propagating mountain waves in Antarctica Peninsula by comparing the ECMWF-T511 and the

Atmospheric Infrared Sounder (AIRS) observations. Gravity waves resolved in ECMWF-T511

showed a good agreement with AIRS observations in terms of vertical and horizontal wavelengths,

amplitudes, and timing.
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Gravity waves resolved in the newer version of ECMWF-T799 have been validated with

satellite data and a high-resolution weather forecast model by the following studies. The daily

and seasonal variations of gravity waves resolved in ECMWF-T799 were compared with SABER

observations in the tropics, the mid-latitudes, and the polar regions [Schroeder et al., 2009]. In the

polar region, ECMWF-T799 and SABER observations generally matched well, though the magni-

tudes of gravity waves in ECMWF were a factor of two smaller than those in SABER observations.

In the tropics, gravity waves were not well represented in ECMWF-T799. Schroeder et al. [2009]

speculated that the convection was not well resolved in ECMWF-T799 due to the model resolution,

resulting in the discrepancies between ECMWF-T799 and SABER gravity waves. In contrast to

the validations by Schroeder et al. [2009], Kim et al. [2009] concluded that ECMWF-T799 has an

ability to resolve typhoon generated gravity waves in the low-latitudes. Gravity waves generated

by a typhoon event in ECMWF-T799 were well compared with AIRS observations and the weather

forecast and research (WRF) model simulations as shown in Figure 2.3. Their results indicated the

capability of resolving convectively generated gravity waves in ECMWF-T799. Furthermore, the

global distributions of gravity waves in ECMWF-T799 were validated with the Microwave Limb

Sounder (MLS) observations by Wu and Eckermann [2008] as shown in Figure 2.4. ECMWF-T799

captured the hot spots of gravity waves, such as at the Antarctica Peninsula, the edge of the polar

vortex, and the tropics related to the deep convection. These hot spots can also be seen from the

MLS observations in Figure 2.4.

Although these previous studies encourage us to use ECMWF-T799 for gravity wave study,

ECMWF-T799 in the stratosphere has not been compared with the ground-based observations

that cover different portions of gravity wave spectra. In addition, the capability of resolving grav-

ity waves under the highly dynamic condition, such as SSWs, has not been validated and examined.

In this chapter, gravity waves in ECMWF-T799 are further validated with ground-based lidar obser-

vations for climatological validations and with the Constellation Observing System for Meteorology

Ionosphere and Climate (COSMIC)/Formosa Satellite 3 (FORMOSAT-3)/GPS for short-term val-

idations during the 2009 SSW. Moreover, gravity waves in ECMWF-T799 are compared with the
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Figure 2.3: Gravity wave temperature variances obtained from (top) ECMWF-T799 data, (middle)
WRF simulations, and (bottom) AIRS observations. This figure is taken from Kim et al. [2009].
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Figure 2.4: Gravity wave temperature variances at ∼44km from (top) AIRS satellite observations
and (bottom) ECMWF-T799 analysis version in August 2006. This figure is taken from Wu and
Eckermann [2008].
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GEOS-5 and the ARPS model for the 2009 SSW, which provides us further confidence in gravity

waves resolved in ECMWF-T799.

2.3 Analysis Methods

2.3.1 ECMWF Data Analysis Method

For the study in this section, the ECMWF data are interpolated onto a regular 2-km ver-

tical grid. To remove large scale waves such as tides and planetary waves, gravity wave pertur-

bations with zonal wavelength shorter than 2400 km and larger than 100 km (4×∆h) are ex-

tracted from temperature (T), zonal wind (U), meridional wind (V), and vertical wind (W) using

wavelet analysis. Gravity waves are further decomposed into five zonal wavelength bands of 100–

200 km, 200–400 km, 400–800 km, 800–1600km, and 1600–2400 km ranges. For each band, GW-Ep

[Ep = 1/2 (g/N)2 (T ′/T0)
2], energy flux (p′w′), and the vertical fluxes of zonal momentum (ρu′w′)

and meridional momentum (ρv′w′) are calculated. Here T0 is background temperature, T ′, u′, v′, w′

are perturbations of T, U, V, and W, respectively, N is the Brunt-Väisäilä frequency, and g is the

gravitational acceleration. The overbar indicates the spatial average over one zonal wavelength for

Ep, p′w′, ρu′w′, and ρv′w′. The vertical fluxes of zonal momentum and meridional momentum have

the following relations based on the dispersion and polarization relations under the assumption of

one dominant wave in each band:

(
ρv′w′

ρu′w′

)
=
l

k
(2.1)

Utilizing the relations of Equation 2.1, the horizontal wavenumber, h, is derived as

h =
√
k2 + l2 =

√√√√k2 +

[(
ρv′w′

ρu′w′

)
k

]2
(2.2)

where k and l are the zonal and meridional wavenumbers, respectively. k is estimated according

to each zonal wavelength band of the wavelet analysis.



www.manaraa.com

23

2.3.2 Lidar Data Analysis

Lidar (Light Detection and Ranging) is an active remote sensing instrument. The Fe Boltz-

man Temperature/Rayleigh lidar developed by the University of Illinois Urbana-Champaign is a

zenith-pointing lidar with dual channels operating at 372 and 374 nm [Chu et al., 2002]. Obser-

vations were first made at the South Pole (90◦S) from December 1999 to October 2001. The lidar

system was then relocated to Rothera (67.5◦S, 68.0◦W) and operated there from December 2002

to March 2005 in collaboration with the British Antarctic Survey. Locations of the South Pole and

Rothera are illustrated in Figure 2.5. For gravity wave analysis, relative density perturbations were

used to characterize gravity waves in Antarctica with temporal resolutions of 5 min and vertical

resolutions of 192 m in the altitude range of 30–45 km.

These data were analyzed for gravity wave study by Yamashita et al. [2009]. Analysis

procedure is repeated here to show the spectrum coverage of gravity waves analyzed with lidar

for the comparison with ECMWF-T799 data. Gravity waves are extracted from relative density

Figure 2.5: Antarctica map with major lidar stations.
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profiles following Gardner et al. [1989], Senft and Gardner [1991], and Gerrard et al. [1998]. Gravity

waves are obtained by subtracting the background atmospheric relative density from each 5 min

density profiles. The background atmospheric density is derived for each 3-h sliding window in the

following steps: (1) The perturbed relative density profiles in a 3-h window are averaged to remove

short-period waves and form a 3-h averaged profile; (2) A 5th order polynomial fit is applied to

this profile to simulate the unperturbed background and long-period waves with long wavelengths,

and then the fit is subtracted from the 3-h averaged profile to obtain a residual; (3) The residual

profile is filtered by a low-pass filter with vertical wave-number cutoff of 0.5 km-1 to reduce photon

noise but retain the residual long-period waves with short wavelengths; (4) The filtered residual

is then added back to the 5th order polynomial fit to form the background relative density for

this 3-h window. The obtained background density is the sum of the unperturbed background

density and perturbations induced by long-period waves (such as tides and planetary waves). By

subtracting the 3-hourly background density from each 5-min density profile, the long-period waves

are removed so the obtained relative density perturbation contains only short-period waves. To

reduce photon noise, the relative density perturbations is low-pass filtered with a vertical cutoff

wavelength of 2 km and a temporal cutoff period of 60 min. The mean potential energy density per

unit mass (GW-Ep) is obtained through averaging over 3-h and 15-km window. GW-Ep contains

gravity waves with period of ∼1–6 hours and vertical wavelength of ∼2–30 km. The further detailed

analysis method and data selection criteria can be found in Yamashita et al. [2009].

2.3.3 COSMIC/GPS Data Analysis

The COSMIC/FORMOSAT-3 was launched in April 2006 [Rockenet al., 2000]. COSMIC/GPS

provides global coverage of temperature profiles from near surface to ∼60 km. Due to the iono-

spheric contaminations, we can only use temperature data up to ∼35 km. COSMIC/GPS tempera-

ture profiles have been used for the climatology study of gravity waves [Alexander et al., 2009] and

the short-term variations of gravity waves during the 2008 SSW [Wang and Alexander, 2009]. In

this study, gravity waves are extracted from COSMIC/GPS temperature profiles based on a classic
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method introduced by Tsuda et al. [2000] and utilized by Baumgaertner and McDonald [2007].

Temperature perturbations with the vertical wavelength less than 10 km are kept as gravity waves

through high-pass filtering on COSMIC/GPS temperature data [Tsuda et al., 2000].

2.4 Comparison of Analysis and Forecast Versions within ECMWF-T799

As discussed above, the analysis version of ECMWF-T799 data is mainly used for gravity wave

study. One of the concerns using assimilated data for gravity wave study is whether assimilation

process generates artificial meso-scale perturbation. If this specious gravity wave generation is

significant due to data assimilation, the resolved gravity waves in the forecast version of ECMWF-

T799 are expected to be smaller than those in the analysis version. Figure 2.6 compares the weekly

mean GW-Ep obtained by the analysis and forecast versions of ECMWF-T799 from a one-year

output at 10 hPa. The forecast times are at 12, 24, 48, and 240 hours after initialization. The

comparison is done at Rothera because of the availabilities of observational data. The magnitudes

and variations of GW-Ep are comparable between the analysis and forecast sets. Some discrepancies

between analysis version and 10 days forecast version can result from the different evolutions

of background flow. In addition to the seasonal variations, snapshots of gravity waves are also

compared. Figure 2.7 shows the polar plots of vertical winds on January 16 in 2009 from analysis

and the 12 hour forecast data. Both snapshots capture two distinct peaks of gravity wave activities

around 150–200◦E and 300–360◦E in 60–70◦N with comparable amplitudes. These comparisons

suggest that the data assimilation process does not impart significant influences on gravity waves.

2.5 Validations with lidar and GPS for Seasonal Variations

Here, the seasonal variations of gravity waves resolved in ECMWF-T799 are validated with

lidar and GPS satellite observations along with various previous studies to understand the capability

of ECMWF resolving the general trend of gravity waves. Figure 2.8 shows the comparisons of GW-

Ep between ECMWF-T799 and available lidar observations from two Antarctic stations: the South

Pole and Rothera, as reported by Yamashita et al. [2009]. Here, the ECMWF-T799 data were
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(b)

Figure 2.6: The weekly-mean total GW-Ep at Rothera at 10 hPa for analysis and forecast versions
with forecast hours of 12h, 24h, 48h, and 240h.

Figure 2.7: Polar plots of vertical winds (color contours) and geopotential height (line contours)
on January 16 at 00 UT at 1 hPa from (left) analysis version and (right) 12 hour forecast version.
Continents are filled with yellow color.
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processed according to the lidar data processing approach. That is, GW-Ep is averaged over the

altitude range of 30–45 km, rather than over one horizontal wavelength, to be consistent with lidar

data analysis. Because of the 6-hourly ECMWF-T799 data, the mean background temperatures

removed from actual temperature profiles are daily means in ECMWF-T799, instead of the 3-hour

means in lidar. This difference in background estimation and limitations in model resolution may

lead to spectral coverage differences. Nevertheless, ECMWF-T799 properly captures the different

seasonal variations observed by the lidars at these two stations: a large seasonal variation with

a maximum in winter and a minimum in summer at Rothera and quiescent GW-Ep through the

year at the South Pole. Such favorable comparison further validates the ECMWF-T799 simulated

gravity waves in the polar region.

Figure 2.9 displays the seasonal variations of gravity waves in ECMWF-T799. GW-Ep is

averaged over the Arctic (50◦N to 90◦N) and the Antarctic (50◦S to 90◦S). Both GW-Ep in the

(a)

Figure 2.8: The weekly mean GW-Ep at Rothera (RO) in 2003–2005 and the South Pole (SP)
in 1999–2001 obtained by lidar, compared with ECMWF-T799 in July 2008 – June 2009 between
30–45 km. Every five other days of ECMWF-T799 data are used to obtain seasonal variations.
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Arctic and Antarctic show clear seasonal variations with a maximum in winter and a minimum

in summer. Figures 2.9c–d show the line plots of GW-Ep averaged over the altitude range of 26–

33 km to compare with CHAMP/GPS observations later. The peak GW-Ep occurs in January

and December in the Arctic. On the other hand, in the Antarctic, GW-Ep peaks in August and

September at the time of transition from the summer to the fall. The peak GW-Ep in the Antarctic

is delayed by about two months compared to results from the Arctic in ECMWF-T799. The phase

differences of seasonal variations between two hemispheres are also observed by CHAMP/GPS in

Figure 2.10 [Hei et al., 2008]. Figure 2.10 shows the climatology of GW-Ep from CHAMP/GPS

observations averaged over the Arctic and Antarctic. GW-Ep peaks on December and January

almost every year in the Arctic, and the peaks in the Antarctic occur around August, September,

and October, similar to ECMWF-T799 simulations.

The seasonal variations of GW-Ep at Rothera and the South Pole and in the Antarctica

and Arctic from ECMWF-T799 are also comparable to other reported observations. The MLS

measurements showed the wave variance to be maximum in winter and minimum in summer around

Drake Passage (50◦S to 70◦S latitude and 290◦E to 315◦E longitude) near Antarctica Peninsula at 28

km and 43 km [Wu and Jiang, 2002]. Baumgaertner and McDonald [2007] reported GW-Ep seasonal

variations in Antarctica from ground to 35 km using CHAMP/GPS occultation temperature data.

They took an average of the GW-Ep over the entire Antarctic (60◦S to 90◦S) and showed a peak

of GW-Ep in August between 30 and 35 km. This is comparable to ECMWF-T799 results at

Rothera, but different from those at the South Pole. The results of Hertzog et al. [2008] showed

that wave momentum fluxes in Antarctica were generally larger from September to October than

during December to January, but they exhibited a decrease in momentum flux as one approaches

the pole. Similarly, gravity wave observations made with a MF radar at Rothera revealed a peak

wind variance in winter in the mesosphere [Hibbins et al., 2007]. Finally, lidar observations at

Sondrestrom, Greenland (67◦N, 310◦E) exhibited wave perturbation in the altitude range of 30–

45 km maximizing in winter and minimizing in summer [Gerrard et al., 2000], very similar to

the ECMWF-T799 trend. Therefore, ECMWF-T799 successfully reproduces the general trend of
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Figure 2.9: ECMWF monthly mean total GW-Ep averaged over entire (a) Arctic (50◦N–90◦N) and
(b) Antarctica (50◦S–90◦S) in 2008–2009. Month mean ECMWF GW-Ep averaged over altitude
range of 26–33 km and (c) Arctic and (d) Antarctica.

Figure 2.10: GW-Ep obtained by CHAMP/GPS averaged over (top) Arctic (50◦N–80◦N) and
(bottom) Antarctica (50◦S–80◦S)and over the altitude range of 26–33 km. The plots are published
by Hei et al. [2008]
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gravity wave seasonal variations in the polar regions.

2.6 Short Term Variations

2.6.1 Validations with COSMIC/GPS

The daily variations of gravity waves are validated with COSMIC/GPS temperature obser-

vations focusing on the period of the SSW in 2009 in the NH. Figures 2.11a–b and 2.11c–d show

the daily-zonal mean of total GW-Ep in January 2009 obtained from ECMWF-T799 and COS-

MIC/GPS observations, respectively. GW-Ep amplitudes from the COSMIC/GPS are largest on

January 21–25, around the peak 2009 SSW period. The magnitude of GW-Ep is slightly smaller

in ECMWF-T799 than in COSMIC/GPS. ECMWF-T799 shows the GW-Ep enhancement several

days earlier than COSMIC/GPS. Despite these differences, the GW-Ep variations in ECMWF-

T799 are generally comparable with COSMIC/GPS observations. This comparison provides an

additional validation of gravity waves resolved in ECMWF-T799.

2.6.2 Validations with GEOS-5 and ARPS models

In addition to observations, gravity waves in ECMWF-T799 are further compared with assim-

ilated data and a numerical model. GEOS-5 is developed by NASA and similar to ECMWF-T799

that employs the 4-D data assimilations system. The horizontal resolution of GEOS-5 used in

this study is 0.66◦, which is about two times coarser than ECMWF-T799. Figure 2.12 shows the

polar plots of gravity waves obtained from ECMWF-T799 and GEOS-5 on December 20, January

5, and January 16, 2009 during the 2009 SSW period. On January 5, both ECMWF-T799 and

GEOS-5 simulate gravity waves with a peak in the longitudinal range of 60◦–130◦E. As similar to

January 5, on January 16, two peaks of gravity waves are simulated by both ECMWF-T799 and

GEOS-5 in the longitudinal range of 140◦–220◦E and 300◦–360◦E. In contrast to January 5 and 16,

gravity waves on December 20 show discrepancies between ECMWF-T799 and GEOS-5. GEOS-5

does not simulate gravity wave enhancements at around 0◦E and 180◦E as ECMWF-T799, but
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Figure 2.11: ECMWF GW-Ep averaged over latitude range of (a) 65–70◦N and (b) 70–75◦N.
COSMIC GW-Ep averaged over latitude range of (c) 65–70◦N and (d) 70–75◦N.
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gravity waves at the edge of polar vortex are simulated in both ECWMF and GEOS-5 on this day.

Although ECMWF-T799 resolves smaller scale waves than GEOS-5 owing to the higher horizontal

and vertical resolution, the locations and timing of strong gravity wave enhancements generally

agree well with GEOS-5.

Finally, ECMWF-T799 is compared with the high-resolution numerical model during the

2009 SSW period. Figures 2.13 and 2.14 show the comparisons between ECMWF-T799 and the

ARPS model during the 2009 SSW on January 10 and 30, 2009 at three different pressure levels, 240

hPa, 57 hPa, and 3 hPa. ARPS results are taken from Limpasuvan et al. [2011]. ARPS used the

horizontal resolution of 10 km and vertical resolution of 400 m in the stratosphere. Both horizontal

and vertical resolutions are higher than ECMWF-T799. Due to the limited computational resources,

Limpasuvan et al. [2011] only simulated the key date during the 2009 SSW, January 10, 20, 25,

and 30. The comparisons of gravity waves on January 10 and 30 show good agreements in terms

of locations and timing as shown in Figure 2.13 and 2.14. For example, on January 10 at 3 hPa,

the ARPS simulates three significant peaks around 0–45◦E and 50–70◦N, 100–120◦E and 60–70◦N,

and 220-270◦E and 50–70◦N. These peaks are also simulated by ECMWF-T799 with coarse and

broader wave structure. The significantly weak gravity wave activities on January 30 are simulated

by both ECMWF-T799 and ARPS models. There are some differences between two simulations

due to different horizontal and vertical resolutions and detailed model setup. However, the general

agreements with the ARPS model that has the higher horizontal and vertical resolutions encourage

us to use ECMWF-T99 model.
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Figure 2.12: (top) polar plots of ECMWF vertical wind and geopotential height. Filled and line
contours represent the vertical wind (cm/s) and geopotential height (m), respectively, at 1 hPa on
(a) Dec. 20, (b) Jan. 5, and (c) Jan. 16. Geopotential height line contour interval is 400 m. Only
vertical winds larger than 8 cm/s are plotted. Continents are filled with yellow color. (bottom)
polar plots of GEOS-5 horizontal wind divergence and geopotential height at 1 hPa on (d) Dec 20,
(e) Jan 5, and (f) Jan 16. GEOS-5 plots are provided by Dr. Varavut Limpasuvan.
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Figure 2.13: Comparisons between (top) ECMWF vertical wind (cm/s) and geopotential height
and (bottom) ARPS horizontal divergence and geopotental height at (left) 240 hPa, (middle) 57
hPa, and (right) 3 hPa on January 10, 2009. Continents are filled with yellow color. ARPS plots
are taken from Limpasuvan et al. [2011]. ECMWF plots are similar to plots in Figure 2.12
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Figure 2.14: Comparisons between (top) ECMWF vertical wind (cm/s) and geopotential height
and (bottom) ARPS horizontal divergence and geopotental height at (left) 240 hPa, (middle) 57
hPa, and (right) 3 hPa on January 30, 2009. Continents are filled with yellow color. ARPS plots
are taken from Limpasuvan et al. [2011]. ECMWF plots are similar to plots in Figure 2.12 but at
different height and date
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2.7 Conclusions

ECMWF-T799 is the new version of ECMWF with the horizontal resolutions of ∼25 km.

Due to the improvement of the horizontal and vertical resolutions, ECMWF-T799 has the capa-

bilities of resolving meso-scale gravity waves with horizontal wavelengths longer than 100–150 km.

The comparisons between forecast and analysis version of gravity waves show good agreements,

indicating that there is no significant influence by data assimilation process on gravity waves.

ECMWF-T799 is further validated with the ground-based lidar and COSMIC/GPS observa-

tions and GEOS-5 and ARPS models. ECMWF-T799 simulates the seasonal variations of gravity

waves at Rothera with a maximum in winter and a minimum in summer and at the South Pole

with relatively flat variations. These two distinct seasonal variations at Rothera and the South Pole

are comparable with the ground-based lidar observations. In addition to the seasonal variations of

gravity waves, the daily variations of gravity waves are compared with COSMIC/GPS observations.

Although the timing and magnitude of GW-Ep peak are slightly different from COSMIC/GPS ob-

servations, the general features of gravity wave variations are well simulated by ECMWF-T799

compared with COSMIC/GPS observations. The locations and timing of gravity wave activities

are also validated with the GEOS-5 and the ARPS models. These validations along with the previ-

ous studies using ECMWF-T799 demonstrate the capabilities of resolving meso-scale gravity waves

in ECMWF-T799. Therefore, ECMWF-T799 is further used to study gravity wave variations and

their mechanisms during the 2009 SSW.
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Gravity Wave Variations during the 2009 SSW

Encouraged by the positive validations of gravity waves resolved in ECMWF-T799, a goal

in this chapter is to investigate the temporal, spatial, and spectral dependence of gravity wave

variations during the 2009 SSW using ECMWF-T799.

3.1 Introduction

As shown by Holton [1983] and Liu and Roble [2002] and discussed in Chapter 1, gravity

waves have significant influences on the MLT temperature responses to SSWs. Despite the im-

portance of gravity waves during SSWs, the limited knowledge of gravity wave variations prevents

from obtaining the in-depth knowledge of gravity wave impacts on atmospheric coupling during

SSWs. There are several observations of gravity waves, but results are sometime conflicting and

inconclusive. Whiteway and Carswell [1994] presented gravity wave variations during the 1993

SSW in the Northern Hemisphere at Eureka (80◦N, 86◦W) by Rayleigh lidar in the altitude range

of 25–55 km. They observed the smaller gravity wave potential energy density (GW-Ep), stronger

dissipation in the stratosphere, and less wave propagation into the mesosphere during the 1993

SSW than non-warming period. On the other hand, Duck et al. [1998] showed the enhancements

of GW-Ep at the same location with the same instrument as Whiteway and Carswell [1994] but

during a different SSW event. Duck et al. [1998] explained this conflict by the positions of the polar

vortex edge that affected the background wind above Eureka. Thurairajah et al. [2010] compared

gravity wave variations from 2002 to 2005 at Chatanika, Alaska (65◦N, 147◦W) including the 2003
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SSW and the 2004 SSW in the altitude range of 40-50 km. GW-Ep weakened during SSWs when

wind reversal occurred, and GW-Ep was the largest during non-warming period in 2004–2005.

In addition to ground-based observations, CHAMP/GPS observations showed the enhance-

ments of GW-Ep during the 2002 SSW in the Antarctic [Vankat Ratnam et al., 2004]. The GW-Ep

in the altitude range of 20–30 km were averaged over entire Antarctica from 60◦S to 90◦S. Their

results showed the GW-Ep enhancements starting from a few days before the 2002 SSW and con-

tinuing until the end of the warming. Most of GW-Ep enhancements were observed at the edge of

the polar vortex and outside the polar vortex. Following Vankat Ratman et al. [2004], Wang and

Alexander [2009] also showed the enhancements of gravity wave temperature variance during the

2008 SSW observed by both COSMIC/GPS and CHAMP/GPS. In contrast to Vankat Ratnam et

al. [2004], Wang and Alexander [2009] did not observe the GW-Ep enhancements prior to the 2008

SSW but at the peak warming period. They showed the strong longitudinal variations of gravity

wave activities, and such variations corresponded well with the strength of the background wind.

Significant decrease of gravity wave momentum flux from the HIRDLS satellite after the 2006 SSW

was also reported [Wright et al., 2010].

In the mesosphere, Hoffmann et al. [2007] presented the variations of gravity wave wind

variances observed by MF Rader at Andenes (69◦N, 16◦E) in the altitude range of 70–85 km. The

reductions of gravity waves are observed during the strong planetary wave activities. After plan-

etary waves were weakened, the enhancements of gravity waves were observed in the mesosphere.

Wang et al. [2006] showed gravity wave variations observed by falling sphere during the 2003 SSW

in the NH. Gravity waves peaked at ∼45-50 km and at ∼60 km during the period of mesospheric

cooling.

While these observations indicate the strong variability of gravity waves associated with

SSWs, the comprehensive pictures of gravity wave variations are still missing. One way to better

understand the gravity wave variation is to conduct detailed analysis of high-resolution model

outputs, which can at least partially resolve gravity waves [e.g., Sato et al., 1999; Watanabe et al.,

2008]. Our goal in this chapter is to investigate the temporal, spatial, and spectral dependence of
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gravity wave variations during the 2009 SSW using ECMWF-T799 data. Analysis methods used

here are summarized in Chapter 2.

3.2 The 2009 Stratospheric Sudden Warming

A major SSW was observed in the Arctic in January 2009 [Manney et al., 2009]. The

zonal mean zonal wind, temperature, temperature changes (anomalies) simulated by ECMWF-

T799 starting January 1 are shown in Figure 3.1. The temperature increases by over ∼60 K at

80◦N and the zonal wind reversal occurs at 10 hPa (∼30 km) on January 23–24 (the peak warming).

At 1 hPa (∼45 km), the zonal wind reversal occurs on January 20–21, several days before the peak

warming at 10 hPa. Figure 3.2 compares the temperature and temperature changes (changes

from January 10) between ECMWF-T799 and SABER observations. ECMWF-T799 does not

use SABER temperature for the assimilation process. Although there are less observations above

∼30 km, ECMWF-T799 captures the reasonable temperature changes compared to SABER. The

downward progression of warm temperature anomalies from ∼50 km to ∼30 km is simulated by

ECMWF-T799 with comparable amplitudes with SABER warm temperature anomalies in Figure

3.2a–b. The mesospheric cooling and stratospheric warming are both well simulated in ECMWF-

T799 compared with SABER; however, the mesospheric cooling in ECMWF-T799 above 55 km is

weaker than that in SABER. This is likely due to the lack of downward flow induced by gravity wave

breaking in the mesosphere because the upper boundary of ECMWF-T799 locates at the middle

of the mesosphere. In general, ECMWF-T799 shows good agreements with SABER observations.

3.3 Gravity Wave Variations during the 2009 SSW

Figure 3.3 shows the polar plots of vertical wind (filled contours) and geopotential height (line

contours) at 1 hPa in the Northern Hemisphere. The vertical wind is used as a proxy for gravity

wave perturbations. The wave-1 geopotential height perturbation (PW1) occurs on January 5

when the significant, localized enhancements of gravity waves are seen between 45◦–135◦E, where

the background wind is the strongest. The wave-2 geopotential height perturbation (PW2) starts to
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Figure 3.1: ECMWF-T799 simulations of the 2009 SSW. (a) Zonal mean zonal wind at 60◦N, (b)
zonal mean temperature at 80◦N, and (c) zonal mean temperature changes from January 1 at 80◦N
obtained by ECMWF-T799.
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Figure 3.2: Zonal mean temperature averaged over 70–80◦N from (a) ECMWF-T799 and (b)
SABER. Zonal mean temperature changes (changes from January 10) averaged over 70–80◦N from
(c) ECMWF-T799 and (d) SABER.
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grow on January 16, and the gravity wave enhancements appear in two distinct locations 180◦–225◦E

and 300◦–360◦E and correspond to the PW2 signature. By January 21, the polar vortex breaks

down and gravity waves generally become weaker compared to Figures 3.3a–c. As the polar vortex

gradually recovers in February, gravity wave presence nearly disappears and becomes significantly

weaker than those on December 20 (before the SSW). ECMWF-T799 results show that the episodes

of gravity wave enhancements on January 5 and January 16 correspond to regions of the strong

background wind at the polar vortex edge which undergoes strong planetary wave perturbations.

As such, Figure 3.3 suggests that lidar observations would detect gravity wave enhancement or

reduction during SSW, depending on the location of the lidar site relative to the locations of strong

background wind at the polar vortex edge. This may explain the discrepancy of gravity waves

reported previously by ground-based observations: the reductions [Whiteway and Carswell, 1994]

and the enhancements [Duck et al., 1998] of gravity waves observed at the same location but in

different years. Furthermore, as shown in Figures 3.4a–3.4d, the overall zonal-mean GW-Ep is

enhanced during the SSW onset, consistent with satellite observations reported by Vankat Ratnam

et al. [2004].



www.manaraa.com

43

F
ig

u
re

3.
3:

F
il

le
d

an
d

li
n

e
co

n
to

u
rs

re
p

re
se

n
t

th
e

ve
rt

ic
al

w
in

d
(c

m
/s

)
an

d
ge

op
ot

en
ti

al
h

ei
gh

t
(m

),
re

sp
ec

ti
ve

ly
,

a
t

1
h

P
a

o
n

(a
)

D
ec

.
2
0
,

(b
)

J
an

.
5,

(c
)

J
an

.
16

,
(d

)
J
an

.
21

,
(e

)
F

eb
.

5,
an

d
(f

)
F

eb
.

20
.

G
eo

p
ot

en
ti

al
h

ei
gh

t
li

n
e

co
n
to

u
r

in
te

rv
a
l

is
4
0
0

m
.

O
n

ly
ve

rt
ic

a
l

w
in

d
s

la
rg

er
th

an
8

cm
/s

ar
e

p
lo

tt
ed

.
C

on
ti

n
en

ts
ar

e
fi

ll
ed

w
it

h
ye

ll
ow

co
lo

r.



www.manaraa.com

44

To illustrate the altitude dependence of gravity waves, Figures 3.4a and 3.4b show the varia-

tions of daily-zonal mean GW-Ep in ECMWF-T799 between 20–60 km at 65◦–70◦N and 70◦–75◦N,

respectively. The zero zonal-mean zonal wind line is overlaid on Figures 3.4a and 3.4b to indicate

the wind reversal from eastward (on the left) to westward (on the right) and then recovery to east-

ward (at the far right). At 65◦–70◦N, GW-Ep peaks on both January 5–7 and January 15–22. At

70◦–75◦N, GW-Ep in Figure 3.4b shows one peak only on January 15–22. In both latitude regions,

the enhancement on January 15–22 first appears in the lower mesosphere on January 15 and then

progresses down to the stratosphere. This downward progression seems to follow the wind reversal,

and the GW-Ep enhancements occur well before the wind reversal at all altitudes. No significant

gravity waves are observed after the wind reversal, which is consistent with HIRDLE observation

[Wright et al., 2010].

Overall gravity wave enhancements appear to correspond to planetary wave growth in Figure

3.3. In order to further examine the correspondence between gravity wave enhancement and plane-

tary wave growth, Figures 3.4c and 3.4d show PW1 and PW2 amplitudes at 65◦–70◦N, respectively.

Prior to the peak SSW, PW1 reaches a maximum around January 5, and GW-Ep increases at the

same time. PW2 maximum occurs around January 20 shortly before the breakdown of the polar

vortex and the wind reversal. The January 15-22 enhancement of GW-Ep corresponds to this

episode of PW2. The planetary wave disturbances in ECMWF-T799 are most significant in the

lower mesosphere in the early stage of the 2009 SSW, and then progress to lower altitudes from

January 5 to January 22, which is consistent with the study by Liu and Roble [2005]. The height

differences of the maximum GW-Ep between January 5 and 20 seem to indicate the downward

progression of gravity wave enhancements corresponding to the downward progression of planetary

waves.

In contrast to GW-Ep at 65◦–70◦N, GW-Ep at 70◦–75◦N does not show a clear peak on

January 5. This is likely because PW1 growth on January 5 is not strong enough and 70◦–75◦N

still lies within the polar vortex (where the wind is weak), resulting in the insignificant changes

in GW-Ep at higher latitudes. On the other hand, PW2 growth displaces the polar vortex edge
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Figure 3.4: The daily-zonal mean total GW-Ep obtained by ECMWF-T799 at (a) 65◦–70◦N and
(b) 70◦–75◦N between 20–60 km. The red lines are the zero zonal mean zonal wind line. The daily
mean geopotential height amplitudes of (c) PW1 and (d) PW2 are plotted.

towards the pole and breaks the vortex on January 15-22. These results indicate the time lag

of the GW-Ep enhancement between different latitudes depending on the movement of the polar

vortex edge, which can also be seen in the polar plots of gravity waves in Figure 3.3. It should be

pointed out that the application of Rayleigh friction above 9.9 hPa in ECMWF-T799 may cause

some damping of gravity waves and weaken gravity waves. Nevertheless, the relative changes of

gravity waves during the 2009 SSW are still meaningful.

To investigate the spectral dependence of gravity wave responses to the 2009 SSW, GW-Ep

is separated into the horizontal wavelength bands of 100–400 km, 400–800 km, and 800–1600 km,

as shown in Figure 3.5. Two peaks on January 5 and January 15–22 exist in both 100–400 km and

400–800 km bands, and the magnitudes of GW-Ep in the 400–800 km band are two times larger

than those in the 100–400 km band. GW-Ep in 800–1600 km shows a significant peak on January

16–18 but not on January 5. Two peaks on January 5 (the large PW1 event) and 15–22 (the

large PW2 event) are dominated by 100–800 km band and 400–1600 km band, respectively. The

dominant horizontal wavelength is between 400-800 km that are consistent with the COSMIC/GPS
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observations showing dominant horizontal wavelength of 400 km for the 2008 SSW [Wang and

Alexander, 2009]. These results indicate the spectral dependence of GW-Ep enhancements and

that gravity waves may respond differently to the different planetary wave activities.

According to Plougonven and Teitelbaum [2003], gravity waves resolved by ECMWF-T511

have different characteristics than these obtained from radiosonde observations at the same location

and time. Although both horizontal and vertical resolutions have been improved from T511 (0.5◦

and 61 vertical level) to T799 (0.25◦ and 91 vertical level), ECMWF-T799 could still have bias

in resolving wave characteristics. In order to examine the impacts of horizontal resolutions of

ECMWF gravity wave simulation, gravity waves simulated by ECMWF-T799 and ECMWF-T1279

are compared. ECMWF-T1279 has a horizontal resolution of 0.15◦ (∼15 km) with the same vertical

resolutions as ECMWF-T799. There are also some upgrades of model setup, and the main change

for gravity waves is the change in the sub-grid gravity wave parameterization scheme. The Rayleigh

friction used in T799 is replaced by a non-orographic gravity wave parameterization scheme for

T1279 while the same orographic gravity wave parameterization scheme is used for both T1279 and

T799.

Figures 3.6a–b show the comparisons between T799 and T1279 version of ECMWF on Jan-

uary 15, 2009. Two distinct regions of strong gravity wave activities in longitudinal sectors of

300–360◦E and 180–250◦E are captured by both versions. As expected, T1279 version resolves

finer wave structures than T799 version. However, the general features of wave enhancements and

structures are comparable between T799 and T1279. Figures 3.6c–d show the spectra of vertical

winds shown in Figure 3.6a–b obtained by 2D FFT. It is clear that the distributions of vertical

wind spectrum are comparable between two versions with a peak around ∼400 km horizontal wave-

length, though magnitudes of power spectral density is larger in T1279 than in T799 in particular

for the smaller scale gravity waves. These comparisons indicate that timing, locations, altitudes,

and spectra are not heavily limited by the horizontal resolution of ECMWF model. However, it

can still be biased by the vertical resolution.
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Figure 3.5: The daily-zonal mean ECMWF GW-Ep at 65◦–70◦N in horizontal wavelength ranges
of (a) 100–400 km, (b) 400–800 km, and (c) 800–1600 km. Red lines are the zero zonal mean zonal
wind line.
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Figure 3.6: Vertical Wind at 1 hPa from (a) T799 and (b) T1279 and spectrum of vertical winds
from (c) T799 and (d) T1279.
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3.4 Conclusions

The ECMWF-T799 data are used to characterize gravity wave variations during the 2009

SSW. The ECMWF-T799 analysis shows that most gravity waves occur at the edge of the polar

vortex, and the magnitude and occurrence of gravity waves correlate with the location and strength

of the polar vortex that is strongly distorted by planetary wave growth. During the development

and the onset of the SSW, the daily-zonal mean GW-Ep first increases on January 5 in coincidence

with PW1 growth. Then, GW-Ep enhances again on January 15–22 as the PW2 magnifies. As

the significant planetary wave disturbances (initially at the lower mesosphere) migrate down to

the stratosphere, strong gravity waves (also initially enhanced at higher altitudes on January 5)

gradually progress downward to the stratosphere around January 22. The downward progression

of GW-Ep and planetary wave enhancement on January 15-22 seems to follow the zero-wind line.

The two gravity wave peaks on January 5 and 15–22 are dominated by 100–800 km band and

400–1600 km band, respectively, indicating the spectral dependence of gravity wave enhancements.

All of gravity wave enhancements occur before the wind reversal, and gravity waves become sig-

nificantly weak after the 2009 SSW. The overall GW-Ep variations in ECMWF are confirmed by

COSMIC/GPS observations in Chapter 2. The combination of ECMWF-T799 and COSMIC/GPS

reveals the dependence of gravity wave variations on location, altitude, time, and spectrum associ-

ated with SSWs.

As pointed out by Dunkerton [1984], gravity waves show preferential propagation in regions

with strong wind, and it may partially explain the ECMWF GW-Ep variations associated with

SSWs. In addition, the dominant horizontal wavelength of 400–800 km from ECMWF-T799 is

consistent with the sub-synoptic scales of gravity waves generated from flow adjustment (∼600 km)

[O’Sullivan and Dunkerton, 1995]. Mesoscale GWs are usually associated with topography, but

can also be generated by flow adjustment [Zhang, 2004]. The spectral dependence may reflect the

gravity wave source influences on GW-Ep variations.
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Physical Mechanisms of Gravity Wave Variations during the 2009 SSW

Gravity wave variations during the 2009 SSW exhibit two peaks of GW-Ep prior to the wind

reversal and a minimum after the wind reversal. The gravity wave enhancements correspond to the

growths of planetary wave 1 and 2 and occur at the edge of the polar vortex. In this chapter, the

physical mechanisms causing these gravity wave variations are investigated, focusing on the in-situ

gravity wave excitations by the polar night jet.

4.1 Introduction

Gravity waves are a key element in defining the large-scale circulation in the stratosphere,

the mesosphere, and the thermosphere through momentum and energy deposition. Although such

gravity wave effects are implemented in most GCMs using gravity wave parameterizations, tempo-

ral and spatial variations of gravity wave sources and the source spectrum are poorly represented

in these parameterization schemes. This fact has been identified as the leading sources of model

uncertainties [McLandress and Scinocca, 2005]. In particular, the knowledge of the in-situ grav-

ity wave excitations by the unbalanced flow related to the jet structures is limited because it is

difficult to separate the in-situ generated gravity waves from gravity waves originating in the tro-

posphere. However, both observations and simulations in both troposphere and the stratosphere

have shown the importance of the in-situ gravity wave sources related to the jet stream [O’sullivan

and Dunkerton, 1995; Uccellini and Koch, 1987; Plougonven and Snyder, 2005]. Uccellini and Koch

[1987] summarized observational results of gravity waves generated by geostrophic adjustment asso-
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ciated with the tropospheric jet. Their observed gravity waves were found in the exit region of the

jet streak with the horizontal wavelength of 50–500 km and wave periods of 1–4 hours. Following

their research, O’sullivan and Dunkerton [1995] simulated gravity waves generated by geostrophic

adjustments with a 3D nonlinear numerical model with the model resolution of 50 km. As the

tropospheric jet stream is distorted, the inertia gravity waves were generated spontaneously in the

jet stream exit region. The horizontal wavelengths and wave periods of the gravity waves were

simulated as 600–1000 km and 12–24 hours, respectively. Using a high-resolution 3D nonlinear

model, Zhang [2004] simulated gravity wave generation associated with the tropospheric jet stream

in the exit region of jet streak. The characteristics of the dominant wave from the simulation were

the horizontal wavelength of ∼150 km, the vertical wavelength of ∼2.5 km, and the period of ∼5

hours. Their model also generated the large-scale inertia waves with the horizontal wavelength of

∼600-1000 km, similar to the results by O’sullivan and Dunkerton [1995], but the mid- to high-

frequency and small-scale gravity waves dominated in results by Zhang [2004]. These results imply

that the in-situ gravity wave sources related to the jets generate not only inertia gravity waves but

also meso-scale high frequency gravity waves.

In the stratosphere, the general structures of the gravity wave enhancements observed by

CHAMP/GPS correlate well with the stratospheric jet structure rather than the topographical

feature in the Antarctic and Arctic [Hei et al., 2008]. Hei et al. [2008] argued that orographic gravity

waves are locally important but the jet-related gravity wave sources are likely more important for

understanding the gravity wave distributions. The downward propagating gravity waves were

observed by radiosonde in the lower stratosphere at Syowa station in Antarctica [Yoshiki and Sato,

2000], which indicated gravity wave sources above their observational heights. Similar downward

propagation of gravity waves has been observed in the stratosphere in both the Antarctic and the

Arctic [Sato and Yoshiki, 2008; Yamashita et al., 2009; Gerrard et al., 2011]. Considering these

observational results, the jet-related gravity wave sources can be as important as the orographic

gravity waves in the polar troposphere and stratosphere.

The in-situ gravity wave excitations due to the unbalanced flow can be more prominent
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during SSWs when the stratospheric polar vortex is extremely disturbed. Nevertheless, gravity wave

variations during SSWs have not been inspected in terms of the changes of gravity wave sources but

mainly by the changes of gravity wave propagations through the modulations of the background flow

[e.g., Whiteway and Carswell, 1994; Wang and Alexander, 2009]. Whiteway and Carswell [1994]

explained the reduction of GW-Ep in the altitude range of 25–55 km by the changes of gravity wave

vertical wavelength. The gravity wave vertical wavelength was shortened due to the weakening of

the background wind in the lower stratosphere. Gravity waves with shorter vertical wavelength tend

to break in the lower altitudes, resulting in the weaker GW-Ep in the upper stratosphere. Wang

and Alexander [2009] reported the enhancement of gravity wave temperature variance during the

2008 SSW in the altitude range of 20–30 km observed by CHAMP/GPS and COSMIC/GPS. The

gravity wave enhancements was likely cased by the increases of the vertical wavelength based on

the ray-tracing study. Thurairajah et al. [2010] compared GW-Ep at Chatanika, Alaska (65◦N,

147◦W) from 2002 to 2005. Based on the high correlation between GW-Ep and background wind

speed, they speculated that the filtering of gravity waves due to wind reversal might play a key

role in determining their observed gravity wave variations during the 2003 and 2004 SSWs. The

falling sphere observed the reductions of gravity wave activity above ∼50 km and a secondary peak

of gravity waves at ∼60 km after the peak 2003 SSW in the NH [Wang et al, 2006]. Because of

the existence of a critical layer for orographic gravity waves below 60 km, the reductions of gravity

waves were likely associated with the filtering of orographic gravity waves.

In contrast to the studies of gravity wave propagation, discussions of gravity wave source

variations during SSWs are not comprehensive. Fairlie et al. [1990] showed generations of inertia

gravity waves associated with the polar vortex distortion during a SSW using ECMWF data with 5◦

× 5◦ resolution. They showed a case of upward and downward phase progressions of gravity waves

starting ∼30 km, indicating the in-situ gravity wave source and also the capability of ECMWF in

resolving in-situ wave generation at ∼30 km. Wang et al. [2006] speculated that the secondary

peak of gravity waves above 60 km during the 2003 SSW was probably due to the secondary gravity

wave generation by orographic gravity wave breaking. Wang and Alexander [2009] tried to tie the
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unbalanced flow in the troposphere to the stratospheric gravity waves. The residual of nonlinear

balance equation (∆NBE) at 350 hPa was used as the indicator of the unbalanced flow. The

very weak correlations between ∆NBE at 350 hPa and gravity wave temperature variances were

reported, indicating that atmospheric disturbances in the troposphere were less likely to contribute

to the enhancement of gravity waves during the 2008 SSW. Although Wang and Alexander [2009]

examined the possibility of in-situ gravity wave source variations, their focus was the tropospheric

jet at 350 hPa (∼9–10 km) rather than the stratospheric jet. Limpasuvan et al. [2010] used

the University of Oklahoma’s Advanced Regional Prediction Systems (ARPS) with the horizontal

resolution of 10 km and the vertical resolution of 400 m. The ARPS has the upper boundary of

65 km and is capable of resolving gravity waves in the stratosphere. They showed that the gravity

waves seen in the stratosphere prior to the 2009 SSW on January 10 were mainly orographic waves.

During the peak and after the 2009 SSW, the in-situ gravity wave generations by adjustments of

unbalanced flow and the secondary generations by breaking of orographic gravity waves occurred

due to the highly disturbed background flow. However, their modeling study was limited to the

four key dates (January 10, 20, 25, 30) during the 2009 SSW. The time-series of gravity wave

variations and detailed studies using high-resolution models like ECMWF are essential to gain a

comprehensive understanding of the roles played by gravity wave source and propagation in SSWs.

The highly disturbed polar vortex can create conditions favorable for the in-situ gravity wave

excitation by the unbalanced flow. The current study aims to investigate the physical mechanisms

that cause gravity wave variations during the 2009 SSW, focusing on the in-situ gravity wave

excitation using ECMWF-T799.

4.2 Gravity Wave Propagation and Source

The physical mechanisms causing the observed gravity wave variations (two peaks of GW-Ep

prior to the peak SSW and sudden decay of GW-Ep after the wind reversal) are either changes in

the gravity wave propagation or source variations. In this section, the following mechanisms are

examined: (1) orographic gravity wave propagation, (2) non-orographic gravity wave propagation,
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(3) convectively generated gravity wave propagation from the tropics to the polar region, (4) shear

instability, and (5) in-situ wave generations related to unbalanced flow. Gravity wave analysis

mainly follows the method introduced in Chapter 2. In this chapter, gravity waves are extracted by

two dimensional (2-D) fast Fourier transform (FFT) with a band pass filter to keep gravity waves

with horizontal wavelength of 300–600 km.

4.2.1 Orographic Gravity Waves

The Gravity-wave Regional Or Global Ray Tracer (GROGRAT) ray-tracing model is used

for gravity wave propagation study. The GROGRAT model is a 4D global ray-tracing model and

the detailed descriptions of GROGRAT model can be found in Marks and Eckermann [1995] and

Eckermann and Marks [1996]. The GROGRAT model has been intensively used to study gravity

wave propagations for various purposes [Gerrard et al., 2004; Li et al, 2009; Lin and Zhang, 2008;

Pressue et al., 2009; Wang et al., 2009] and also used for a SSW study [Wang and Alexander, 2009].

The 6-hourly ECMWF outputs of temperature, zonal wind, meridional wind, and vertical wind are

used as the background conditions for input to the GROGRAT model.

For orographic gravity waves, gravity wave parameters used for the GROGRAT ray-tracing

are the horizontal wavelengths of 200 km and 400 km and the ground-based horizontal phase

speed of 0 m/s (stationary relative to ground). It is assumed that these orographic gravity waves

propagate against the mean flow at the source level. Orographic gravity waves are launched every

5◦ latitudes and 10◦ longitudes at 6 km. Gravity waves are only launched on the land from 30◦–

80◦N. The choice of the horizontal wavelengths of 200 km and 400 km is because the dominant

horizontal wavelength during the 2009 SSW is ∼400 km [Yamashita et al., 2010] and mountain

waves tend to have shorter horizontal wavelengths. The total numbers of 380 gravity waves with

the same characteristics are launched daily from December 20 to January 31. Probabilities are

calculated by the numbers of waves reaching 40 km divided by the total number of waves.

Figure 4.1 shows polar plots of the normalized amplitudes of gravity waves reaching 40 km

on January 1, 5, 16, and 28. These four dates are chosen to understand gravity wave changes
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associated with the evolution of planetary waves: typical winter case (before the 2009 SSW) on

January 1, PW1 growth and the 1st GW-Ep amplification on January 5, PW2 growth and the

2nd GW-Ep amplification on January 16, and after the wind reversal on January 28. Amplitudes

are normalized by the maximum amplitudes to show relative changes of gravity wave amplitudes.

Figure 4.2 shows the maximum magnitudes of wind rotation that is defined by the changes of

background wind directions through 5–40 km as shown below [Whiteway et al., 1997; Yamashita

et al., 2009].

Wind Rotation (z) = |Wind Direction (z) - Wind Direction (at 5km) |

For example, if wind direction at 5 km is 30◦E and at 10 km is 130◦E, then wind rotation is a change

of wind direction, 100◦. Larger wind rotation indicates larger changes of wind directions and thus

higher probabilities of filtering orographic gravity waves. In Figure 4.1 on January 1, gravity wave

amplitudes are larger in the longitudinal range of 45◦–180◦E and in the latitude range of 60◦–70◦N.

In this region, wind rotations are small (blue color) as shown in Figure 4.2 indicating that this

region is a favorable region for orographic gravity wave propagation, which is consistent with the

GROGRAT ray-tracing results. Wind rotations on January 28 are smaller around 35◦–180◦E and

60◦–70◦N, and gravity wave amplitudes are larger in the same region. Comparing Figure 4.1 to

4.2, the locations of large gravity wave amplitudes generally anti-correlate with wind rotations.

Some discrepancies between wind rotations and GROGRAT results are likely due to the horizontal

propagation considered in the GROGRAT but not in wind rotation. Overall GROGRAT results

appear to be reasonable when compared with wind rotation results.
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Figure 4.1: Normalized gravity wave amplitudes reaching 40 km calculated by the GROGRAT
ray-tracing model with ECMWF background temperatures and winds
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Figure 4.2: Polar map of wind rotation between 5 km and 40 km using zonal and meridional winds
from ECMWF-T799
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Figure 4.3a displays the time-series of normalized probability of orographic gravity waves

reaching 40 km computed from the GROGRAT model. Probabilities are normalized by the maxi-

mum probabilities of gravity waves reaching 40 km between January 1 and January 31. The zonal

mean GW-Ep calculated by ECMWF-T799 averaged over the altitude range of 35–60 km in the

latitude range of 65◦-70◦N are overlaid on Figure 4.3. The GW-Ep shows two peaks on January

5 and 16 and decay after ∼January 21. The normalized probabilities of orographic gravity wave

propagation in Figure 4.3a show a periodicity of roughly 5 days. This 5-day periodicity probably

results from the modulations of the background flow by 5-day planetary waves. The 5-day oscil-

lations in the normalized probability do not correlate with the two peaks of GW-Ep variations.

However, the decay of GW-Ep after January 20 corresponds well with the decrease of probability

in gravity wave propagations. To quantify the relationship between GW-Ep and the normalized

probability of orographic wave propagation, the linear correlation coefficients (LCC) between the

normalized probability and GW-Ep variations for different periods are calculated. The LCC for the

overall period from January 1 to January 28 is 0.39 with over 95% significance level. It increases

to 0.67 (over 95% significance level) for the period from January 18 to 28 considering only after

wind reversal but significantly decreases for the period from January 1 to 18 before wind reversal

without any statistically significant correlations. These statistical results indicate that the changes

in orographic gravity wave propagation are important for the reduction of GW-Ep during and after

the wind reversal (January 18–28). However, such propagation changes do not likely contribute to

the two peaks of GW-Ep before the wind reversal on January 5 and 16.

4.2.2 Nonorographic Gravity Waves

Gravity waves excited by nonorographic wave sources (e.g., convection, frontal system, and

geostrophic adjustment) are considered as nonorographic gravity waves. In this section, the changes

in the propagation of nonorographic gravity waves excited in the troposphere are examined using

GROGRAT model. Gravity waves are launched at 12 km considering gravity wave generation by

the tropospheric jet [Zhang, 2004; Osullivan and Dunkerton, 1995]. Gravity waves are launched



www.manaraa.com

59

Orographic waves

5 10 15 20 25
DOY in 2009

0.0
0.2
0.4
0.6
0.8
1.0

No
rm

. P
ro

ba
bi

lit
y

2
4
6
8
10
12

G
W

-E
p 

(J
/K

g)

Non-orographic waves

5 10 15 20 25
DOY in 2009

0.0
0.2
0.4
0.6
0.8
1.0

No
rm

. P
ro

ba
bi

lit
y

2
4
6
8
10
12

G
W

-E
p 

(J
/K

g)

Orographic waves

5 10 15 20 25
DOY in 2009

0.0
0.2
0.4
0.6
0.8
1.0

No
rm

. P
ro

ba
bi

lit
y

2
4
6
8
10
12

G
W

-E
p 

(J
/K

g)

Non-orographic waves

5 10 15 20 25
DOY in 2009

0.0
0.2
0.4
0.6
0.8
1.0

No
rm

. P
ro

ba
bi

lit
y

2
4
6
8
10
12

G
W

-E
p 

(J
/K

g)

(a)	  

(b)	  

Figure 4.3: (Black) Normalized probabilities of (a) orographic and (b) non-orographic gravity wave
reaching 40 km from the GROGRAT ray-tracing model. (Red) zonal-daily mean GW-Ep in the
latitude range of 65–70◦N and in the altitude range of 35–60 km.
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every 10◦ latitudinal and 25◦ longitudinal grids from the latitude range of 5◦–75◦. The horizontal

wavelength is 400 km, and the ground-based horizontal phase speeds are 15 m/s and 30 m/s.

Gravity wave propagation directions are homogeneously distributed between 0◦ and 360◦ for every

60◦ assuming equal possibility for gravity waves to propagate in any direction. Figure 4.3b shows

the normalized probabilities of gravity waves that reach 40 km. The probabilities of non-orographic

wave propagations also exhibit some modulations before January 20; however, they do not match

the two peaks of GW-Ep. The LCC between the normalized probability and GW-Ep from January

1 to 28 is 0.56 with over 95% significance level. Before the wind reversal from January 1 to 18, the

LCC is 0.05, and after the wind reversal from January 18 to 28, the LCC is 0.61. These statistical

results also indicate that the changes in nonorographic gravity wave propagation contribute to

the reduction of GW-Ep after wind reversal but not to the two peaks of GW-Ep before the wind

reversal.

4.2.3 Propagation of Convective Gravity Waves from the Tropics to Polar Region

Besides gravity waves generated in the polar region, it is possible that the GW-Ep enhance-

ments observed in the stratosphere and the mesosphere are caused by waves propagating from the

tropics [Sato, 2000]. The enhancements of the tropical convection during SSWs are reported by

Eguchi and Kodera [2007] due to the changes of the Brewer-Dobson circulations by planetary wave

amplifications. It is thus possible that these enhanced tropical convections stimulate additional

gravity wave generation, and the meridional propagations of the amplified tropical gravity waves

cause the gravity wave enhancements in the polar stratospheric and mesosphere.

In order to examine such a possibility, Figure 4.4 displays the time-series of convective pre-

cipitation obtained from the output of ECMWF-T799. Here, the convective precipitation is used as

an indicator of the strength of convective gravity wave sources in the tropics. The convective pre-

cipitation in the tropics increases after January 16 probably related to the 2009 SSW as suggested

by Eguchi and Kodera [2007]. Further examining the changes in meridional propagation of gravity

waves, Figure 4.5 illustrates the time variations of energy flux and the vertical fluxes of zonal and
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meridional momentum. These fluxes are computed by using the method introduced in Chapter 2.

When energy flux (p′w′) is positive (negative), the positive (negative) meridional momentum fluxes

represent the northward gravity wave propagation. In Figure 4.5, the upward gravity wave energy

flux dominates, and the positive meridional momentum fluxes indicate the northward propagation.

The magnitudes of meridional momentum flux decrease after January 15. This result indicates that

the meridional propagation of gravity waves from the tropics to the polar region is weaker during

the period with the GW-Ep enhancements around January 16 than that during the normal winter

conditions. Hence, gravity wave propagation from the tropics may not contribute to two peaks

of GW-Ep in the polar stratosphere and the lower mesosphere. It is worth to point out that the

propagation time for the tropical gravity waves to reach the polar region needs to be considered if

a thorough analysis on this subject is to be conducted. Since this thesis focuses more on the wave

sources, it will not be addressed further in the current work.

Figure 4.4: ECMWF tropical convective precipitation averaged over the tropics, 15◦S–15◦N.
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Figure 4.5: (Top) Energy flux, p′w′, vertical fluxes of (middle) meridional momentum and (bottom)
zonal momentum integrated over longitude range of 0–360◦ and altitude range of 10–40 km.
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4.2.4 In-situ Gravity Wave Sources

In addition to the changes in gravity wave propagation, it is possible that planetary wave

amplifications alter the in-situ gravity wave generations during the 2009 SSW. In order to study

the source and sink of gravity waves, the total perturbation energy flux, FE , is used here [Hines

and Reddy, 1967; Lindzen, 1990]. FE is defined as:

FE = p′w′ + Uρu′w′ + V ρv′w′. (4.1)

FE is conserved if no dissipation of gravity wave occurs. The decrease and increase of FE with

altitude indicate the sink and source of gravity waves, respectively.

Figure 4.6 shows the line plots of zonal-daily mean of FE in the different latitude bands. In

Figure 4.6, January 1, 5, 16, and 28 can be considered as the typical winter condition, time with

PW1 growth, time with PW2 growth, and after the SSW, respectively. On January 1, FE is the

largest in the lower stratosphere and decaying above 20 km for all latitude regions except latitude

band of 60◦–70◦N. Decaying of FE indicates the strong gravity wave dissipation above 20 km. The

slight increases of FE above ∼25-30 km in the latitude range of 60◦–70◦N represent the existence

of in-situ energy source under the normal winter conditions. On January 5, FE in 30◦–50◦N decays

above 20 km, but FE in 60◦–75◦N increases above ∼25 km. On January 16, FE in 30◦–45◦N decays

above 17 km, and FE in 45◦–60◦N increases by two-fold in the altitude range of 20–30 km and

37–45 km. FE in 60◦–70◦N keeps increasing above ∼25 km but FE in 70◦–90◦N stays constant

from ∼15 km to 45 km with very weak gravity wave amplitudes. In contrast to FE on January 5

and 16, FE in all latitude bands on January 28 decays or stays constant above 20 km. Note that,

FE on January 1 above 30 km is larger than that on January 28. FE on January 1 (normal winter

conditions) exhibits some in-situ energy increase in between the altitude range of 20–45 km but

not on January 28. These results suggest that in-situ energy source is weaker after the 2009 SSW

than under normal winter conditions.

To examine the locations of in-situ energy source, the vertical gradient of FE between 20 and
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Figure 4.6: Daily mean total energy flux of gravity waves with horizontal wavelength of 300–600
km on (a) January 1, (b) January 5, (c) January 16, and (d) January 28. Each color represents
different latitudes.
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45 km are shown as polar plots in Figure 4.7. The vertical gradient is simply obtained from the

following equation:

V ertical Gradient of FE =
FE(45 km) − FE(20 km)

25 km
(4.2)

As indicated by Hines and Reddy [1967] and Lindzen [1990], the positive and negative gradients of

FE indicate the source and sink of gravity waves, respectively. There are slight increase of FE in the

longitudinal range of 45◦–130◦E at 60◦–70◦N on January 1. On January 5, the large enhancement

of FE occurs in the longitudinal range of 70◦–130◦E at 60◦–70◦N. On January 16, the positive

gradients of FE peak in the longitudinal range of 170◦–225◦E at 60–70◦N and in the longitudinal

range of 280◦–360◦E at 60◦–70◦N when PW2 growth starts. On January 28 after the peak SSW,

there is no obvious in-situ energy increase. A peak on January 5 and two peaks on January 16 are

well correlated with the locations of strong gravity wave signature in Figure 3.3 in Chapter 3.

Illustrated in Figure 4.8 are the time-series of vertical gradients of FE along with GW-Ep.

The two peaks of GW-Ep on January 5 and 16 correlate well with the vertical gradient of FE . The

LCC between GW-Ep and the vertical gradient of FE is 0.63 from January 1 to 28 but increases

to 0.82 (over 95% of confidence level) with data only from January 1 to January 20 excluding the

decay of GW-Ep and a sharp peak on January 21. The sharp peak on January 21 is likely be related

to ducted gravity waves. The altitude range of 20–45 km only covers some portion of the ducted

gravity waves, resulting in the sharp peak on January 21. This ducted wave is interesting feature

but is beyond our scope in this study. The high correlations between the in-situ energy source and

GW-Ep variations indicate that the gravity wave enhancements prior to the peak SSW are most

likely related to the in-situ energy sources. The vertical gradients of FE also exhibit decay after

January 22, so the suppression of in-situ energy sources may have contributed to the reduction of

GW-Ep after the wind reversal.
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Figure 4.7: Polar plots of the daily mean vertical gradient of total energy flux between 20 km and
45 km on (a) January 1, (b) January 5, (c) January 16, and (d) January 28. Black line contours
represent constant pressure levels
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Figure 4.8: Time variations of the vertical gradient of total energy flux between 20 and 45 km in
the latitude range of 65–70◦N. (Red line) GW-Ep is averaged over the altitude range of 35–60 km
and the latitude range of 65–70◦N.
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4.3 In-situ Gravity Wave Generations

4.3.1 Temporal and Spatial Variations of Residual Tendencies

The in-situ gravity wave generations by unbalanced flow related to the jet structures are

usually indicated by the intensity of unbalanced flow. The Lagrangian Rossby number [Koch and

Dorian, 1988; Zhang et al., 2000; Liu and Meriwether, 2004], the residual of nonlinear balance

(∆NBE) [Zhang et al., 2000; Zhang, 2004], and the residual tendencies [Snyder et al., 2007; 2009]

have been used as indicators of the in-situ gravity wave source. In this study, the residual tendencies

introduced by Snyder et al. [2007, 2009] are employed to study the in-situ gravity wave generation.

Following Snyder et al. [2009], the momentum equations for zonal and meridional directions are

written as:

∂u

∂t
= −u∂u

∂x
− v∂u

∂y
+ fv − ∂Φ

∂x
(4.3)

∂v

∂t
= −u∂v

∂x
− v∂v

∂y
− fu− ∂Φ

∂y
(4.4)

where Φ is the total geopotential, u is the total zonal wind, v is the total meridional wind, and f is

the Coriolis parameter. Total flow (u , v , Φ) can be separated into the large scale part (denoted

by overbars) and the unbalanced or perturbation part (denoted by primes):

(u, v,Φ) =
(
u, v,Φ

)
+
(
u′, v′,Φ′

)
(4.5)

Substituting Equation 4.5 into primitive Equations 4.3 and 4.4, then the following equations are

obtained:

∂u

∂t
+ U · ∇u+ fv +

∂Φ

∂x
= −∂u

′

∂t
−U′ · ∇u′ −U′ · ∇u−U · ∇u′ + fv′ − ∂Φ′

∂x
(4.6)

∂v

∂t
+ U · ∇v − fu+

∂Φ

∂y
= −∂v

′

∂t
−U′ · ∇v′ −U′ · ∇v −U · ∇v′ − fu′ − ∂Φ′

∂y
(4.7)
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Right hand side of above equations describes the fluid flow of perturbed flow, and the left hand

side can be regarded as the residual tendencies acting as forcing terms of the perturbed flow:

Fu = −∂u
′

∂t
−U′ · ∇u′ −U′ · ∇u−U · ∇u′ + fv′ − ∂Φ′

∂x
(4.8)

Fv = −∂v
′

∂t
−U′ · ∇v′ −U′ · ∇v −U · ∇v′ − fu′ − ∂Φ′

∂y
(4.9)

where:

Fu =
∂u

∂t
+ U · ∇u− fv +

∂Φ

∂x
(4.10)

Fv =
∂v

∂t
+ U · ∇v + fu+

∂Φ

∂y
(4.11)

In spherical coordinates, they become

Fu =
∂u

∂t
+

u

acosφ

∂u

∂λ
+
v

a

∂u

∂φ
− fv +

1

acosφ

∂Φ

∂λ
− uvtanφ

a
(4.12)

Fv =
∂v

∂t
+

u

acosφ

∂v

∂λ
− v

a

∂v

∂φ
+ fu+

1

a

∂Φ

∂φ
+
u2tanφ

a
(4.13)

where φ is latitude, λ is longitude, and a is the mean radius of the earth.

These equations indicate that the residual tendency terms, Fu and Fv, are zero if the flow

is fully balanced. The generation mechanism is schematically illustrated in Figure 4.9. When an

air parcel moves through the flow field, it is subject to these residual tendencies and experiences

displacements. The residual tendencies are associated with the large-scale flow, which is quasi-

stationary prior to warming. Therefore, the spatial scale of the residual tendencies and the velocity

of the parcel determine the time of the air parcel moving through the forcings and thus the fre-

quencies of gravity waves excited. This is somewhat analogous to the excitation of an orographic

wave. This Lagrangian view of gravity wave excitations by jet is discussed by Snyder et al. [2009].

In this study, the large-scale flow (u, v,Φ) is defined as the sum of zonal wavenumber 0–

4 components of zonal wind and meridional wind. In order to exclude the contributions of the
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higher-order terms in nonlinear terms, Fu and Fv are calculated using the following equations for

this study.

Fu =
∂u

∂t
+

u

acosφ

∂u

∂λ

(0−4)

+
v

a

∂u

∂φ

(0−4)

− fv +
1

acosφ

∂Φ

∂λ
− uvtanφ

a

(0−4)

(4.14)

Fv =
∂v

∂t
+

u

acosφ

∂v

∂λ

(0−4)

− v

a

∂v

∂φ

(0−4)

+ fu+
1

a

∂Φ

∂φ
+
u2tanφ

a

(0−4)

(4.15)

where nonlinear terms are denoted by the long overbars with (0-4) that are advection terms and

curvature terms, and the rests (time tendency, pressure gradient force, and Coriolis forces) are liner

terms. Linear terms are calculated using the large-scale flow (u, v,Φ) that are zonal wavenumber 0-4

components of zonal wind and meridonal wind. The overbars with (0-4) represent that terms are

calculated using the total flow of zonal wind and meridonal wind (u, v), and then the wavenumber

0-4 components of nonlinear terms calculated with the total winds (u, v) are extracted as nonlinear

terms to calculate Fu and Fv using Equations 4.14–4.15.

Figure 4.9: Schematics of gravity wave generations by the residual tendencies, Fu and Fv. Gray
arrow indicates forcings of Fu and Fv, and black arrow indicates the trajectory of an air parcel.
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The residual tendencies, Fu and Fv, calculated using Equations 4.12–4.13 are shown in Figures

4.10–4.11 at 1 hPa on January 5, 11, 16, and 28. On January 5 at 1 hPa, the large Fu and Fv exist

in the longitudinal region of 45◦–180◦ as shown by the black circles, which is consistent with the

large gravity wave activity region in Figure 3.3. On January 16, Fu and Fv become large in the

longitudinal regions of 110◦–220◦ and 270◦–360◦ as indicated by black circles. The distributions

of Fu and Fv on January 16 also match well with the large gravity wave activity region in Figure

3.3. In contrast to Fu and Fv at 1 hPa on January 5 and 16, Fu and Fv on January 11 and 28 are

weaker, and the gravity wave excitation is also weaker.

To study the temporal variations of the magnitudes of residual tendencies, the daily-zonal

mean Fu and Fv are shown in Figure 4.12. Both Fu and Fv show two peaks on January 5 and 16

and are weak after January 25. These variations are well correlated with the GW-Ep variations

in Figure 3.4 and also the vertical gradient of FE variations in Figure 4.8. The large Fu and

Fv are extended to lower altitudes on January 16 than those on January 5, and these downward

progressions of Fu and Fv are also consistent with the downward progressions of peak GW-Ep

discussed in Chapter 3. These results strongly indicate that in-situ gravity wave excitations by

spontaneous responses to the residual tendencies are most likely the key mechanisms responsible

for the gravity wave variations associated with the 2009 SSW.
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Figure 4.10: Polar plots of Fu on January 5, 11, 16, and 28 at 1 hPa. White line contours indicate
geopotential height.
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Figure 4.11: Polar plots of Fv on January 5, 11, 16, and 28 at 1 hPa. White line contours indicate
geopotential height.



www.manaraa.com

74

Figure 4.12: Zonal-daily mean of (top) Fu and (bottom) Fv in the latitude range of 60◦–70◦N.
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4.3.2 Case Study of In-situ Wave Generations

The total perturbation energy fluxes, residual tendencies, and GW-Ep indicate that the

in-situ gravity wave excitations by spontaneous responses to the residual tendencies are likely

responsible for two peaks of GW-Ep. In this section, the wave generation on January 16 is further

examined in details at a particular location. Note that, ECMWF-T799 data used here is a hourly

forecast data that is a spacial version of ECMWF-T799, allowing us to examine the in-situ gravity

wave excitation.

Background Structure

Figures 4.13 and 4.14 show polar plots of gravity waves and the background flow with hourly

ECMWF forecast data at 1 hPa and 10 hPa, respectively. There are two distinct locations of jet

distortions and strong gravity wave activities in the longitudinal regions of 135–225◦E (top side of

polar plots) and 280–360◦E (bottom side of polar plots) around 60–70◦N both at 1 hPa and 10

hPa, even though some detailed wave structures and locations are somewhat different between the

two layers. The clear polar vortex signatures exist in the zonal wind field at both 1 hPa and 10

hpa. Zonal wind at 1 hPa is generally stronger than that at 10 hPa. The maximum zonal winds

exceed 80 m/s in 180–225◦E and 325–360◦E at 10 hPa and 120 m/s in 165–195◦E and 330–360◦E

at 1 hPa. Amplitudes of wavenumber 2 components of meridional wind perturbations are larger at

1 hPa than those at 10 hPa. The temperature in the polar region is still colder than that outside

of the polar vortex at 10 hPa. At 1 hPa, the temperature in the polar region begins to warm up

and shows significant longitudinal variations. This case study focuses on gravity wave generation

in the region of the black boxes shown in Figure 4.13 and 4.14. The region of the black box is

between Alaska and Russia and has relatively less topographical feature compared to the regions of

280–360◦E where Greenland is a probable location for orographic gravity waves. The chosen region

contains the jet exit region that creates conditions favorable for the in-situ spontaneous gravity

wave generation [Uccellini and Koch, 1987].



www.manaraa.com

76

Figure 4.13: Polar plots of vertical wind (w), zonal wind (U), meridional wind (V), and temperature
(T) at 1 hPa on January 16, 2009 at 0 UT. Blackbox indicates a region of case study shown in the
following sections. White line contours represent geopotential height. Thick black lines indicate
continents.



www.manaraa.com

77

Figure 4.14: Same as Figure 4.13 but at 10 hPa.
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Evolutions of Gravity Waves

Plotted in Figure 4.15 is the time variation of vertical wind gravity wave variances that are

integrated in the region of 50–85◦N and 150–200◦E shown by the black boxs in Figures 4.13–4.14.

The sharp increase of gravity wave variances occurs on January 16 from 8 UT to 13 UT, and this

case study examines the period from 8 UT to 18 UT in this region.

Figures 4.16–4.17 show the evolutions of gravity waves and geopotential height fields from

the hourly ECMWF-T799 forecast data. The hourly ECMWF-T799 forecast data is initialized at

12 UT every day and runs 36 hours without any assimilation process. The period of 8–18 UT used

in this case study does not include any assimilation process. Gravity waves in Figures 4.16–4.17

are normalized by the square root of atmospheric density to compensate the exponential growth

of gravity wave amplitudes. If gravity waves propagate from below without any dissipation, the

same amplitudes of gravity waves should show up at both 1 hPa and 50 hPa. In both Figures

4.16 and 4.17, strong gravity wave activities occur over Alaska (right top corner of each plot) at 1

hPa and 50 hPa. Normalized amplitudes of gravity waves are stronger at 50 hPa than those at 1

hPa over Alaska, indicating that these gravity waves originate in the lower atmosphere and some

of the gravity waves are dissipated between the troposphere and the stratosphere. On the other

hand, the gravity waves between Russia and Alaska at 1 hPa specified by black boxes do not have

obvious connections with the lower atmosphere at 50 hPa. These gravity waves in black boxes

likely originate between 50 hPa and 1 hPa.
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Figure 4.15: Time-series of vertical wind variances integrated over 50–85◦N and 150–200◦E at 1
hPa
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Figure 4.16: Time variations of vertical winds at (top) 1 hPa and (bottom) 50 hPa on January
16 at 8, 10, and 11 UT. Black line contours indicate geopotential height. White line represents
continents. Black boxs identify gravity waves that are studied in this case study.
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Figure 4.17: Same as Figure 4.16 on January 16 at 13, 16, and 18 UT.
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Figure 4.18 illustrates the horizontal and vertical slices of gravity waves on January 16 at

14 UT and 18 UT. Gravity waves are again normalized by atmospheric density. Figures 4.18c–d

display the vertical slices along the black lines in the horizontal plots in Figures 4.18a-b. In Figures

4.18c–d, gravity wave signatures appear in the middle of domain in the altitude range of 25–50

km, and there is no clear connection with the troposphere. Amplitudes are obviously larger in

the upper stratosphere between 30 km and 50 km than amplitudes between 10 km and 25 km. In

Figures 4.18e–h, the total energy fluxes and vertical fluxes of zonal momentum also display the

maximums around 30–45 km and discontinuities from the troposphere. In addition to the vertical

discontinuity, Figures 4.18e-h also exhibit horizontal discontinuities. The maximum momentum

fluxes and total energy fluxes locate in the middle of each plot and suggest that these gravity waves

are not resulting from horizontal or vertical propagation of gravity waves but in-situ generation.

Figure 4.19 shows the vertical slices of Fu and Fv along with the vertical wind perturbations

at 14 and 18 UT. The locations of vertical slices in Figure 4.19 are the same as those in Figure

4.18. The large Fu and Fv are on the left side of gravity waves shown in Figure 4.19a–b. For this

case, the background wind is blowing from the left side to the right side of each plot. Air parcels

moving with the wind experience Fu and Fv. Hence, gravity waves are expected to be excited on

the right side of Fu and Fv, as shown in top panels of Figure 4.19. The relative locations of gravity

waves and large Fu and Fv strongly suggest that these gravity waves are generated by spontaneous

response to the residual tendencies.
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Figure 4.18: Vertical slices of gravity wave vertical wind, total energy flux, and vertical flux of zonal
momentum flux on January 16 at (left) 14UT and (right) 18UT. Gravity waves are normalized by
square root of atmospheric density. The momentum flux and total energy flux are multiplied by
103. Black line contours indicate (top) geopotential height, and (2nd, 3rd, and bottom) zonal wind.
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Figure 4.19: Vertical slices of (top) gravity wave vertical wind, (middle) Fu, and (bottom) Fv on
January 16 at (left) 14 UT and (right) 18UT. Vertical winds are normalized by square root of
atmospheric density. Black line contour represent (middle) zonal wind and (bottom) meridional
wind.
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Gravity Wave Characteristics

Now, the characteristics of gravity waves resolved in ECMWF shown in Figures 4.19 and 4.18

are estimated using the dispersion relation. The dispersion relation is:

ωi =
N2h2 + f2

(
m2 + 1

4H2

)
h2 +m2 + 1

4H2

(4.16)

where ωi is intrinsic frequency, h is horizontal wavenumber, m is vertical wavenumber, H is scale

height, and f is the Coriolis parameter [Fritts and Alexander, 2003].

From Figure 4.18 (one of the vertical and horizontal slices) on January 16 at 14 UT, the

vertical wavelength is ∼10 km and the horizontal wavelength is ∼400 km. At this location, average

N is ∼0.022 s−1 (N2 = ∼0.00052 s−2), and f is 1.3×10−4 s−1 at 65◦N, and an average temperature

is ∼218 K. Based on the dispersion relations, the intrinsic frequency is ∼5.8×10−4 s−1 and the

period of ∼180 min. For the case on January 16 at 18 UT, the vertical wavelength is ∼8 km, the

horizontal wavelength is ∼400 km, average N is ∼0.022 s−1 (N2 = ∼0.00052 s−2), and f is 1.3×10−4

s−1, and an average temperature is ∼215 K. The estimated intrinsic frequency is ∼4.7×10−4 s−1

and the period of ∼221 min.

The ratio of intrinsic frequency, ωi, to the Coriolis parameters, ωi/f, is 4.4 on January 16

at 14 UT and 3.6 on January 16 at 18 UT. Previous simulations of gravity wave generation by

spontaneous adjustment associated with the tropospheric jet steam showed ωi/f of 3.7 [Zhang,

2004], 3.6 [Wang and Zhang, 2007], and 2.1 [Lin and Zhang, 2007]. Therefore, the gravity wave

characteristics in this case study shown in Figure 4.18 are comparable with previous simulation

results. Observed characteristics of gravity waves generated in-situ by the tropospheric jet were

horizontal wavelength of 50–500 km and period of 1–4 hours (60-240 min) [Uccellini and Koch,

1987], which are well comparable with our results from ECMWF-T799.

Gravity wave characteristics are also estimated using the horizontal scale of Fu and Fv and

wind speed. The period of gravity waves can be estimated by the durations of air parcel movements

through Fu and Fv. The duration is estimated by the following simple equation:
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Period ≈ Distance

Wind Speed
(4.17)

The scales of Fu and Fv in Figure 4.19 are roughly 1000–1500 km. Wind speed along the vertical

slices in the stratosphere is ∼80–120 m/s. Based on Equation 4.17 shown above, gravity waves

excited by Fu and Fv are likely to have the following wave period:

Gravity Wave Period (h) =
1000− 1500 km

80− 120 m/s

1

3600 s
= 2.3− 5.2 hours (4.18)

Gravity waves in this case study have wave period of ∼3–4 hours, consistent with gravity wave

period estimated by the spatial scale of Fu and Fv and wind speed. The horizontal wavelengths

of gravity waves studied here are ∼400 km from Figure 4.18. Comparing the previous simulation

results, the dominated wavelengths were ∼150 km by idealized in-situ wave generation simulation

by Zhang [2004], ∼70-100 km by Snyder et al. [2007,2009], and ∼300 km by Wang et al. [2009].

Our results are somewhat consistent with previous simulations.

4.3.3 Shear Instability

The shear instability is one of the possible causes of gravity wave variations. Limpasuvan et

al. [2011] and Wang et al. [2006] showed the secondary generations of gravity waves by gravity wave

breaking in the upper stratosphere during SSWs. In this study, the Richardson numbers calculated

from the hourly ECMWF-T799 forecast output are always above 0.25 in the stratosphere where FE

increases, indicating the absence of shear instability. The non-modeled gravity wave growth from

shear flow with the large Richardson numbers are discussed by Bakas and Farrell [2007], and this

possibility needs to be investigated in the future.
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4.4 Conclusions

The physical mechanisms causing gravity wave variations during the 2009 SSW are investi-

gated with the ECMWF-T799 and the GROGRAT ray-tracing model. The variations of GW-Ep

variations during the 2009 SSW exhibit two peaks prior to the wind reversal and a minimum after

the wind reversal. Two peaks of gravity wave enhancements cannot be explained by the changes in

either orographic or nonorographic gravity wave propagations from the polar troposphere or grav-

ity wave propagation from the tropics. Instead, the two-peaks of GW-Ep correlate well with the

increases of in-situ energy sources suggested by the height variations of total perturbation energy

flux (FE). In ECMWF-T799, the Richardson numbers are always above 0.25 in the stratosphere,

indicating that the shear instability is not the causes of energy increase in this case. The spatial and

temporal variations of in-situ energy source and also GW-Ep correspond to those of the residual

tendencies introduced by Snyder et al. [2007, 2009] that can excite gravity waves in-situ in the

stratosphere. Therefore, this study reveals that two peaks of gravity wave enhancements are most

likely caused by the increases of the in-situ gravity wave excitations through spontaneous responses

to the residual tendencies.

The sudden decay of gravity wave activities correlates well with the variations of probabilities

of gravity wave propagations from the troposphere to the stratosphere obtained from the GRO-

GRAT ray-tracing model. In addition, residual tendencies decay after January 25. These results

indicate that decay of gravity waves after wind reversal is likely due to the changes of gravity wave

propagations along with the reduction of in-situ gravity wave sources.

In this study, ECMWF-T799 indicates that the increases of the in-situ gravity wave exci-

tations are responsible for the gravity wave enhancements prior to the 2009 SSW. However, it is

possible that the changes in gravity wave propagation can be more important for other cases. For

example, Wang and Alexander [2008] concluded that the enhancements of gravity wave tempera-

ture variances were caused by the changes in gravity wave propagation but not by in-situ gravity

wave excitations for the 2008 SSW. The 2008 SSW consisted of several minor SSWs and was weaker
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than the 2009 SSW. The 2008 SSW is caused by the enhancements of planetary wave 1, but the

2009 SSW is due to the planetary wave 2 with the polar vortex split. These differences in types or

magnitudes of SSWs might alter the physical mechanisms that are responsible for the gravity wave

variations.
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Chapter 5

Sensitivity Study of the MLT Temperature Responses to Gravity Wave Forcing

during SSWs

In this chapter, the responses of MLT temperatures to gravity wave forcing are examined. In

particular, this chapter focuses on the characteristics of temperature anomalies and their downward

progression from the mesosphere to the stratosphere using TIME-GCM.

5.1 Introduction

Stratospheric sudden warmings (SSWs) have global influences on the atmospheric circula-

tions from the troposphere to the thermosphere [e.g., Mastuno, 1971; Labitzke, 1972; Liu and

Roble, 2002; Yamashita et al. 2010]. Sudden enhancement of planetary waves and their interac-

tions with the mean flow are widely accepted as the cause of SSWs [Matsuno, 1971]. Associated

with SSWs, cooling in the mesosphere and warming in the lower thermosphere have been observed

[e.g., Labitzke, 1972; Siskind et al., 2005; Coy et al., 2005]. The first observation of the cooling

in the mesosphere was reported by Labitzke [1971] using Satellite Infrared Spectrometer, Selective

Chopper Radiometwer, and Rocketsondes data. Following observations by Labitzke [1971], White-

way and Carswell [1994] showed the stratospheric warming and mesospheric cooling by Rayleigh

lidar observations. Waltersheid et al. [2000] presented their observed cooling by OH airglow tem-

perature measurements. Hoffmann et al. [2007] used the temperature and wind measurements

from meteor radars at Resolute Bay (75◦N, 95◦W), Andenes (69◦N, 16◦E) and Khlungsborn (54◦N,

12◦E) to show the mesospheric cooling by ∼10K associated with SSW. In addition to the ground-
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based observations, the cooling and warming in the mesosphere and the lower thermosphere (MLT)

were also observed by SABER satellite observations [Siskind et al., 2005].

These MLT temperature changes associated with SSWs are simulated by the TIME-GCM,

the Navy-Operational Global Atmospheric Prediction System - Advanced Level Physics and High

Altitude (NOGAPS-ALPHA), and the Canadian Middle Atmosphere Model Data Assimilation Sys-

tem (CMAM-DAS) [Liu and Roble, 2002; Coy et al., 2005; Ren et al., 2008]. Based on numerical

modeling studies, the changes in filtering of gravity waves due to wind reversal are most likely

responsible for the MLT temperature anomalies [Holton, 1983; Liu and Roble, 2002]. The impor-

tance of gravity wave forcing for capturing mesospheric cooling has also been examined using the

NOGAPS-ALPHA model with and without the Rayleigh friction and the CMAM-DAS model with

and without a non-orographic gravity wave parameterization [Coy et al., 2005; Ren et al., 2008].

In general, simulations with gravity waves considered gave more realistic results than without the

parameterization in the MLT region.

TIME-GCM has been able to capture some of above SSW signatures, though discrepancies

between TIME-GCM simulations and observations still exist and vary from event to event [Siskind

et al., 2005; Coy et al., 2005; Liu and Roble, 2005]. Figure 5.1 shows the comparisons between

the SABER (version of 1.07) observation and TIME-GCM simulation with typical gravity wave

parameters for the 2008 SSW. The setup of typical gravity wave parameters is summarized in Table

1 as the base case. Minor and major warmings were observed in the NH in 2008. The episode of

the minor SSW event from January 18 to January 29 is shown here. In Figure 5.1, the color

contours are the zonal mean temperature changes during this SSW event. TIME-GCM captures

the general features of these observed temperature changes including the stratospheric warming,

the mesospheric cooling, and the thermospheric warming. However, TIME-GCM simulations do

not reproduce the detailed observed features. These discrepancies lie in two major categories: (1)

the characteristics of cooling and warming regions in the MLT: the lower thermospheric warming

in TIME-GCM is significantly stronger than in SABER, while the height and vertical depth of

the simulated mesospheric cooling are higher and narrower, respectively, than observed by SABER
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and (2) the downward trend of temperature anomaly from the mesosphere to the stratosphere: the

downward progression of temperature from ∼60 km to ∼35 km was clearly observed by SABER but

not obvious in TIME-GCM. In contrast to the 2008 SSW simulation, the mesospheric cooling region

in SABER observations for the 2002 Southern Hemisphere SSW is narrower than in TIME-GCM

simulations [Coy et al., 2005; Liu and Roble., 2002].

Both MLT temperature characteristics and downward progressions can be tied to gravity

waves because of the crucial role of gravity wave forcing in MLT dynamics. It is thus necessary

to systematically quantify the dependence of the MLT temperature responses to SSWs on the

gravity wave parameters, which is the primary goal of this work. In addition, the role of planetary

Figure 5.1: Temperature and temperature changes from day 18 during the 2008 SSW. (a,b) SABER
observations (version 1.07) at 80◦N 2.5◦ from January 18 to 29. The peak SSW is observed around
day 24. (c,d) TIME-GCM simulation with typical gravity wave parameters (case 2 in Table 1) at
81.25◦N.
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waves generated in-situ by gravity wave forcings in the MLT is examined. The generation of these

planetary waves was discussed by Smith [1996], but their roles in the MLT temperature responses

to SSWs have not been fully examined. The numerical tool used for this study is the NCAR

TIME-GCM, which has a unique advantage of an upper boundary at ∼500 km, thus the capability

of simulating thermospheric effects. It should be noted that the main purpose of the current

study is not to reproduce the exact observed features. Rather, the focus is to study how the MLT

temperature responses to different gravity wave parameters in TIME-GCM during SSWs.

5.2 TIME-GCM

The TIME-GCM developed at the NCAR is used for this study. The horizontal resolution is

2.5◦ × 2.5◦ (latitude × longitude), and the vertical resolution is four grid points per scale height.

The lower boundary is specified by the ECMWF data at 10 hPa every 6 hours, and the model domain

is from 10 hPa to ∼500 km with 89 vertical levels. Detailed descriptions of TIME-GCM are provided

in Roble and Ridley [1994] and Liu and Roble [2002] and references therein. TIME-GCM employs

a gravity wave parameterization based on the liner saturation theory [Lindzen, 1981; Holton, 1982;

Garcia and Solomon, 1985; Fritts, 1984]. Gravity wave parameters are typically specified at the

lower boundary of model domain. Figure 5.2 shows the input gravity wave parameters and output

gravity wave forcing from this parameterization scheme. As shown in the left side of Figure 5.2, a

Gaussian shape of discrete spectrum is used to define the gravity wave parameters. The horizontal

wavelength, spectral width, numbers of waves, spectral peak shift, and initial momentum flux can

be specified in the model. Incorporating the setup of input parameters and winds and temperatures

from TIME-GCM, the gravity wave parameterization scheme calculates gravity wave forcing and

breaking altitude. These calculated gravity wave forcing outputs are then transferred to TIME-

GCM.

For the TIME-GCM simulations used here, the gravity wave input is specified at 10 hPa with

a discrete spectrum (15 m/s interval) in a Gaussian shape with a fixed horizontal wavelength. The

spectral width (defined as the range of phase velocity), horizontal wavelength, and wave amplitude
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Figure 5.2: Schematics of input to and output from gravity wave parameterization scheme.

are varied in the parameterization scheme, and the parameters used in this study are summarized

in Table 5.1. Here the same Gaussian function is used for describing the spectral shape, while the

spectral width is adjusted between ±30 m/s and ±90 m/s. In all cases of simulations, we vary

gravity wave parameters only from 0◦ to 90◦N while keeping the base case parameters for 0◦ to

90◦S. This study aims to investigate (1) how the magnitude, height, and depth of gravity wave

forcing are controlled by the input gravity wave parameters, and (2) how the MLT temperatures

respond to the changes in gravity wave forcings.

Table 5.1: Gravity wave parameters used in TIME-GCM simulations

Range of Phase Velocities
(Spectral Width)

Horizontal Wavelength Momentum Flux

Base Case -90 to 90 m/s 100 km ∼ 10−4 Pa

Case 1 -30 to 30 m/s 100 km ∼ 10−4 Pa

Case 2 -90 to 90 m/s 1000 km ∼ 10−5 Pa

Modified Case -60 to 60 m/s 1000 km ∼ 10−4 Pa
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5.3 Responses of the MLT Temperatures to Gravity Wave Forcing during

Stratospheric Sudden Warming

5.3.1 Profile Study using Gravity Wave Parameterization Scheme

We examine how gravity wave forcings vary with different gravity wave parameters input to

the parameterization scheme. Figures 5.3a and 5.3b show forcings generated by gravity waves with

different spectral widths and horizontal wavelengths using the wind profile plotted in Figure 5.3c

during a SSW at high latitudes. In Figure 5.3a, the gravity wave forcing region expands upward by

∼15 km when the spectral width is increased from ±30 m/s to ±90 m/s with a constant horizontal

wavelength of 100 km. This upward expansion is caused by faster gravity waves propagating and

breaking at higher altitudes. The magnitude of total gravity wave forcing also increases with the

wider spectral width as more wave components are introduced. In Figure 5.3b, the horizontal

wavelength of input gravity waves is varied from 1000 km to 10 km with a constant spectral width

of ±90 m/s. As the horizontal wavelength decreases, gravity wave forcing becomes stronger, the

forcing region expands, and the altitude of the maximum GW forcing increases. This is because

the dispersion relations dictate that for a fixed phase speed, gravity waves with shorter horizontal

wavelengths have higher frequencies and longer vertical wavelengths, and these waves can propagate

to higher altitudes [Holton, 1983]. No strong forcing is observed above the height of ∼100 km in

the 1000 km case (Figure 5.3b) as the breaking altitudes of these waves are lower than other cases.

5.3.2 Temperature Anomaly in TIME-GCM

Equipped with the understanding from section 5.3.1, we now examine how the MLT cooling

and warming regions respond to gravity wave forcings in TIME-GCM. Figures 5.4a-5.4d show

TIME-GCM simulations for 4 different cases: A case without gravity wave parameterization and

three cases with gravity waves as listed in Table 1. Compared with the base case, case 1 uses the

narrower spectral width and case 2 uses the longer horizontal wavelength and larger amplitude

gravity waves. In Figure 5.4a for the case without the gravity wave parameterization, no warming
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Figure 5.3: Gravity wave forcing output from the gravity wave parameterization. (a,b) gravity
wave forcing calculated under the zonal wind condition shown in (c). (a) varying spectral range
of ±90 m/s (thick gray), ±60 m/s (dash), and ±30 m/s (black solid) with a constant horizontal
wavelength of 100 km, (b) setting the horizontal wavelength to 10 km (thick gray), 100 km (dash),
and 1000 km (black solid) with a constant spectral range of ±90 m/s.

occurs in the lower thermosphere but there are∼17 K stratospheric warming and∼10 K mesospheric

cooling. Compared to Figure 5.4a (No gravity waves), the base case (Figure 5.4b) gives a similar

magnitude of stratospheric warming, but much stronger cooling (∼30 K) in the mesosphere and

warming (∼29 K) in the lower thermosphere. In case 1 (Figure 5.4c), the mesospheric cooling and

lower thermospheric warming are weaker by ∼4 K and ∼22 K, respectively, than the base case.

Case 2 (Figure 5.4d) has the height and magnitude of the mesospheric cooling region to be ∼10 km

lower and ∼9 K weaker, respectively, than the base case. In case 2, gravity waves break at lower

altitudes, thereby damping planetary waves in the breaking region. This prevents the planetary

waves from growing to larger amplitudes thus resulting in a weaker, lower, and narrower warming

region below 70 km compared to the base case. Although gravity waves have some influence on the

characteristics of warming below 70 km, the stratospheric warming below 70 km and stratospheric

jet reversal (not shown) occur in all cases of TIME-GCM simulations with and without gravity wave

parameterization, confirming that planetary waves are the main driver of SSWs [Matsuno,1971].

Nevertheless, the magnitude, height, and vertical depth of the cooling and warming regions in the

MLT vary significantly with different gravity wave forcings.
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Figure 5.4: TIME-GCM simulations at 81.25◦N with different gravity wave parameters (a) no grav-
ity wave parameterization, (b) base case, (c) case 1, and (d) case 2. Color contours show the zonal
mean temperature changes (K) at 12UT after day 18, 2008. Line contours show the zonal mean
gravity wave forcing changes (m/s/day) at 12UT. Solid/dash line represents the eastward/westward
forcing, respectively.
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5.3.3 Residual Circulation Induced by Gravity Wave and Planetary Wave Forcings

The changes of gravity wave forcing during this SSW relative to January 18 are over-plotted

as white line contours on Figures 5.4a-d. The vertical depth of gravity wave forcing regions is wider

in the base case than in case 1, because the base case uses the wider range of gravity wave spectrum.

Moreover, the height of gravity wave forcing regions is lower in case 2 than the base case due to

the longer horizontal wavelength and lager amplitude gravity waves used in case 2. These results

are consistent with the trend shown in section 5.3.1 and the results presented by Holton [1983].

Now we investigate the mechanisms how gravity wave forcing affects the height, vertical

depth, and magnitude of the cooling and warming regions in the MLT. The lower thermospheric

warming and the mesospheric cooling occur above and below the peak eastward forcing region,

respectively in Figures 5.4c–d. Compared to Figure 5.4b, the heights of gravity wave forcings in

Figure 5.4d are lower by ∼10 km, and the heights of the cooling and warming regions are also

lower by ∼10 km. The magnitude of warming at 100–120 km and cooling at 70–100 km in the

base case is much stronger than those in case 1 and case 2, because the larger changes of eastward

gravity wave forcing in the base case induce stronger upward/downward circulation in the MLT

than in other cases. The vertical depth of the cooling regions in case 2 is larger than in case 1

as eastward gravity wave forcing region is wider in case 2. Therefore the height, vertical depth,

and magnitude of the MLT cooling and warming regions generally agree with the characteristics of

gravity wave forcings regions. However, the following exceptions are noted. First, the magnitudes

of gravity wave forcing changes are larger in case 2 than case 1 (Figures 5.4c and 5.4d), which

should induce stronger downward/upward circulation between 60-120 km thus larger temperature

response in case 2, but such response is not seen in Figures 5.4c and 5.4d. This may be partly due

to the larger air density at lower breaking levels in case 2. Second, although the vertical depth of

gravity wave forcing in the base case between January 24 and 28 above 80 km is wider than that in

case 1 (Figures 5.4b and 5.4c), the overall vertical depths of the mesospheric cooling regions above

65 km are comparable in the two cases. These discrepancies cannot be explained by gravity wave
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forcing alone but by the combinations of gravity wave forcing and planetary wave forcing in the

MLT.

In order to further investigate the physical mechanisms of differences among cases, the residual

circulations and Eliassen-Palm (EP) flux are calculated based on the transformed Eulerian-Mean

equations (TEM) [Andrews et al., 1987]. A residual mean meridional circulation (v∗, w∗) are defined

as:

v∗ = v − 1

ρ0

(
ρ0v′θ′

θz

)
z

(5.1)

w∗ = w +
1

acosφ

(
cosφv′θ′

θz

)
φ

(5.2)

EP flux, F = (Fφ, Fz), is defined as:

Fφ = ρ0acosφ

(
uzv′θ′

θz
− v′u′

)
(5.3)

Fz = ρ0acosφ

{[
f − 1

acosφ
(ucosφ)φ

]
v′θ′

θz
− w′u′

}
(5.4)

The divergence of EP flux are derived as:

∇ · F =
1

acosφ

∂Fφcosφ

∂φ
+
∂Fz
∂z

(5.5)

where v and w are zonal-mean meridional wind and vertical wind, respectively, v ’, w ’, and θ’ are

deviations from the zonal mean of meridional wind, vertical wind, and potential temperature. φ is

latitude, ρ is atmospheric density, and a is the earth radius.

Figure 5.5 shows the temperature anomalies along with vector plots of the changes of residual

circulation (a–c), the changes of parameterized gravity wave forcing (d–f), the changes of resolved

planetary wave forcing (the Eliassen-Palm flux divergence) (g–i), and the resolved planetary wave

perturbations in the zonal wind field (j–l). Here, the changes of gravity wave and planetary wave

forcing and residual circulation are the differences between January 18 (before SSW) and January 25

(during SSW). The changes of residual circulation in Figures 5.5a–c are driven by the Coriolis forces

(shown as black arrows in Figures 5.5d–i) induced by the changes of gravity wave and planetary
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Figure 5.5: The zonal-mean (top; a,b,c) temperature changes from January 18 over-plotted with
residual circulation changes, (2nd column; d,e,f) parameterized gravity wave forcing changes
(m/s/day), (3rd column; g,h,i) resolved planetary wave forcing changes (m/s/day), and (bottom;
j,k,l) planetary scale perturbation on zonal wind (m/s) at 64◦N on January 25 for three different
cases (left: base case, middle: case 1, and right: case 2). The residual circulation vectors are
normalized. Black arrows (in d-i) represent Coriolis force induced by the corresponding forcing
changes. Negative/positive value represents the westward/eastward forcing and zonal wind.
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wave forcing. As clearly seen in Figures 5.5a-c, the locations of cooling and warming of temperature

anomalies correspond well with the changes of the upward and downward circulation, respectively.

Compared with case 1, eastward gravity wave forcing in case 2 locates at lower heights at

middle latitudes but at similar heights at high latitudes (Figures 5.5e and f). We also notice that the

high-latitude gravity wave forcing in case 2 is much stronger than that in case 1. In the meantime,

westward planetary wave forcing in case 2 is significantly larger than that in case 1 (Figures 5.5h

and i). The westward planetary wave forcing in case 2 overlaps with eastward gravity wave forcing

at high latitudes. Thus, the planetary wave forcing cancels the gravity wave forcing in case 2,

leading to the MLT temperature anomalies at high latitudes comparable to case 1. This explains

the first exception mentioned above.

The second exception, i.e., discrepancy in the vertical depth of the mesospheric cooling region

in the base case and in case 1, is explained by the differences in downward flow at 100–120 km. In

Figures 5.5d, e, g, and h, poleward circulation induced by combinations of westward gravity wave

and westward planetary wave forcing between 100–120 km are larger in the base case than in case

1, leading to the stronger downward flow at 100–120 km in the base case. Such enhanced downward

flow at 100–120 km erodes the region with upward flow induced by eastward gravity wave forcing.

In other words, the region of upward flow in the base case is shrunk by the strong downward flow

above it. Thus, the vertical depth of cooling at 70–100 km in the base case is similar to that in

case 1, even though the vertical depths of gravity wave forcing regions are wider in the base case.

The origin of planetary wave in MLT is an interesting question. The planetary wave forcings in

Figures 5.5g–i appear to be correlated with gravity wave forcings in Figures 5.5d–f. Both planetary

wave and gravity wave forcing changes at high latitudes are over 150 m/s/day in the base case, but

less than 50 m/s/day in case 1. Both planetary wave and gravity wave forcing regions are ∼10 km

lower in case 2 than in the base case. Smith [1996] suggests that the planetary-scale disturbances

are generated in-situ by longitudinal variations of gravity wave forcing in the mesosphere due to

the gravity wave filtering by planetary waves in the stratosphere. According to Smith [1996], if

planetary waves in Figures 5.5g–i are generated in-situ by the mesospheric gravity wave forcing,
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the phases of planetary waves in the stratosphere and above the mesosphere are expected to be

180 degrees out of phase. Figures 5.5j–l show the planetary scale perturbations on the zonal wind

field, and the phases of planetary waves above 100 km are ∼180 degrees out of phase from those

below 100 km for all the cases. Thus, our study indicates that planetary waves contributing to

the simulated MLT temperature anomalies are generated in-situ by gravity wave forcing during the

SSW.

5.4 Roles of Gravity Waves in Downward Progression of Temperature

Anomaly

This section discusses the influences of gravity wave parameters on downward progression of

temperature anomaly observed during SSWs. Shown in Figure 5.6a is a time-altitude contour of

zonal mean SABER temperature in January 2008 averaged over the latitude range of 77.5◦ and

82.5◦. Clear downward progression of warm temperature anomaly is observed from ∼60 km to ∼40

km. On the other hand, the TIME-GCM base case simulation with typical gravity wave parameters

in Figure 5.6b does not show clear downward progression, though it shows some warming in the

stratosphere. Figure 5.6c displays the TIME-GCM simulation with modified parameters. This

modified setup of gravity wave parameters is summarized in Table 5.1 as modified case. These

modified parameters are determined to simulate the temperature anomaly better compared to

the SABER observations based on the knowledge obtained in the previous section. The modified

parameters use longer horizontal wavelength and narrower horizontal phase speed than the base

case. The reason of this modification is that the height of cooling and warming regions are too high

in TIME-GCM base case than SABER as can be seen in Figure 5.1. By increasing the horizontal

wavelength, gravity waves break in the lower altitudes, resulting in the lower cooling region. The

magnitudes of warming in the lower thermosphere are too strong in the base case, and thus the

spectral width is reduced to decrease gravity wave forcing at the higher altitudes. Comparing

Figures 5.6b with 5.6c, the downward propagation of temperature anomaly becomes much clearer

in the modified case. The only difference between these TIME-GCM simulations is the setup of
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gravity wave parameters, indicating the effects of gravity wave spectra on the downward progression

of temperature anomalies from the mesosphere to the stratosphere.

The TIME-GCM simulation has been improved with the modified gravity wave parameters;

however, the downward propagation and warming in the stratosphere in TIME-GCM simulations

are still quite weak compared to SABER observations. Figure 5.6d shows the simulation results

by the NCAR Whole Atmosphere Community Climate Model (WACCM). WACCM is the 3D self-

consistent model from the ground to the thermosphere. Detailed descriptions of WACCM can

be found in Garcia et al. [2007]. Because WACCM is a self-consistent model, this simulated

SSW is not the same SSW event as observed by SABER and simulated by TIME-GCM. However,

WACCM captures both the downward progression and the reasonable magnitude of warming in

the stratosphere as observed by SABER. This WACCM simulation is thus used to diagnose the

causes of downward propagations.

Comparing two TIME-GCM simulations in Figures 5.6b-c, one of the main differences is the

height of the zero-wind line of zonal mean zonal wind shown as white thick line in Figures 5.6b-c.

The zero-wind lines are ∼115 km in the base case and ∼90 km in the modified case on January

18 during the SSW onset. The height difference of ∼25 km between two TIME-GCM simulation

is induced by the different gravity wave parameters. Furthermore, the zero-wind line in WACCM

simulation is much lower than in the TIME-GCM modified case. The zero-wind line in WACCM

is ∼70 km when temperature anomaly starts propagating downward, which is ∼20 km lower than

that in the TIME-GCM modified case. The zero-wind line is a critical layer for stationary planetary

waves. As a result, we hypothesize that planetary waves and the height of the zero-wind line may

be responsible for the weaker downward progression in TIME-GCM.

To further examine this hypothesis, we plot the amplitude of the zonal wave number 1

component of the geopotential height perturbations (PW1) in Figure 5.7. Wavenumber 1 is the

dominant components in the above simulations. Figure 5.7a shows PW1 with no gravity wave

parameters. In this case, PW1 propagates up to the lower thermosphere. The zero-wind line for

PW1 is too high to filter PW1 in the lower altitude and there is no gravity wave to damp PW1.
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Figure 5.6: Zonal mean temperature around 80◦N from (a) SABER observations, (b) TIME-GCM
base case, (c) TIME-GCM modified case, (d) WACCM. White thick lines represent the zero-wind
lines of zonal mean zonal wind during the 2008 SSW.
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Figure 5.7b shows PW1 in the base case. Although the zero-wind line in the base case is as high

as that in no gravity wave case, PW1 is weaker above ∼80 km in the base case. This probably

results from damping of PW1 by gravity wave breaking in the base case. In modified case, PW1

decays above ∼55 km. The zero-wind line height is lowered down due to the lower height of gravity

wave breaking than in the base case. At the same time, gravity wave forcing is increased in the

lower altitude (∼50–80 km), leading to the damping of PW1 in this region. Finally, Figure 5.7d

shows PW1 simulated by WACCM. In this case, PW1 shows the peak amplitude slightly below the

zero-wind line, and the amplitude of PW1 is significantly decaying above the zero-wind line. PW1

in WACCM is likely controlled by the zero-wind line but not damped by gravity wave forcings.

These TIME-GCM and WACCM simulations indicate that both the height of zero-wind line and

gravity wave forcings control planetary waves.

Although both WACCM and TIME-GCM employ a gravity wave parameterization scheme

based on the linear saturation theory [Lindzen, 1981], WACCM shows the better SSW simulation

than TIME-GCM. WACCM simulation shown here does not include the physically based gravity

wave source variations [Richter et al., 2010]. One of the main differences between WACCM and

TIME-GCM in terms of gravity waves is the launching altitude of gravity waves. In WACCM,

gravity waves are specified at ∼500 hPa, but at 10 hPa in TIME-GCM. Gravity wave filtering in

the troposphere is included in WACCM but not in TIME-GCM, which may result in the better

SSW simulations by WACCM. However, it should be noted that WACCM simulation is taken from

one of the climate simulation and it is possible that self-consistent WACCM accidentally simulate

the right height of zero-wind height.

Based on above analysis, gravity waves play an important role in setting up an adequate

height of the zero-wind line and alter planetary wave structure. To further confirm the importance

of the initial height of the zero-wind line, an idealized simulation study that can control the height

of the zero-wind line without altering the planetary wave amplitudes is needed.
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Figure 5.7: The zonal mean amplitudes of wavenumber 1 components of geopotential height pertur-
bations (m) on January 23 for TIME-GCM simulations with (a) no gravity wave parameterization,
(b) the base case, and (c) modified case gravity wave parameterization, (d) WACCM simulations.
White lines represent the zero-wind line of zonal mean zonal wind.
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5.5 Conclusions

This chapter examines how the height, vertical depth, and magnitude of the cooling and

warming regions in the MLT vary with gravity wave parameters in TIME-GCM during a minor

SSW. All of the TIME-GCM simulations with and without gravity wave parameterization show

the stratospheric jet reversal, the stratospheric warming, and the mesospheric cooling. Thus, we

confirm that the general features of SSWs in the stratosphere and the lower mesosphere are mainly

determined by planetary waves as suggested by Matsuno [1971]. The height, vertical depth, and

magnitude of the MLT cooling and warming regions, on the other hand, vary significantly with

gravity wave forcing.

The characteristics of gravity wave forcing are heavily dependent on the specifications of

gravity wave parameters in the model: gravity waves with wider spectral width produce the wider

vertical extent of the gravity wave forcing region, and gravity waves with longer horizontal wave-

lengths and larger amplitudes result in the lower height of the gravity wave forcing region. The

gravity wave forcings control the pattern and strength of residual circulation and thereby the char-

acteristics of the MLT cooling and warming regions. The height of the MLT cooling and warming

regions is mainly determined by the height of gravity wave breaking. The vertical depth and magni-

tude of the cooling and warming regions are closely tied to the vertical depth and magnitude of the

gravity wave forcing. Both of these features could be modified by planetary wave forcing through

influencing the residual circulation. Our simulations in the base case show that westward gravity

wave forcings at middle latitudes and planetary wave forcings at high latitudes induce poleward

flow in the lower thermosphere above the equatorward flow in the upper mesosphere generated by

eastward gravity wave forcings at high latitudes. This circulation drives the downward flow in the

lower thermosphere and the upward flow in the upper mesosphere, leading to the adiabatic warm-

ing and cooling, respectively. Furthermore, the planetary wave occurrence height can vary with

gravity wave breaking height, leading to the cancellation between planetary wave and gravity wave

forcings. This could further modify the circulation thus the cooling and warming characteristics in
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the MLT. These planetary waves occurring at high latitudes in MLT are likely generated in-situ

by gravity wave forcings. Therefore, our study shows that the height, width, and magnitude of

the MLT cooling and warming regions during SSWs are strongly affected by gravity waves directly

through gravity wave forcing and indirectly through the in-situ generation of planetary waves.

Capturing the downward progression of temperature anomaly from the mesosphere to the

stratosphere is dependent on gravity wave parameters in the model. Because the zero-wind line is

the critical layer for the stationary planetary waves, the height of zero-wind line at the onset of

SSWs is most likely one of the key elements of downward progression. Although planetary waves

are the main driver for downward progression, gravity waves likely affect the downward progression

through modifying the height of zero-wind line, altering planetary wave amplitudes, and inducing

additional vertical circulation.

Therefore, this study suggests the roles of gravity waves during SSWs as the following: (1)

Gravity waves set up the adequate height of the zero-wind line for planetary waves and gravity

waves to interact with mean flow at the onset of SSW, (2) gravity wave forcings accelerates the

meridional circulation equtorward and induces the warming in the lower thermosphere and the

cooling in the mesosphere, (3) the longitudinal variations of gravity wave forcing in the MLT

caused by planetary waves in the stratosphere excite secondary planetary waves in MLT that further

modify the MLT circulation. Given the sensitivity of MLT response to gravity wave parameters,

uncertainties in gravity wave parameters may be responsible for the discrepancy between model

and observations. The variability of MLT temperature responses to different SSW events may also

reflect the variability in gravity wave source and propagation. Better knowledge of the gravity wave

source and propagation during SSWs is thus critical for correctly simulating the MLT impact of

SSWs.
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Impacts of Gravity Wave Variations on the Upper Atmosphere for the 2009

Stratospheric Sudden Warming

In this chapter, the impacts of gravity wave variations on the MLT temperatures are investi-

gated through implementing the ECMWF gravity wave variations in the TIME-GCM for the 2009

SSW simulations. Two controlled simulations are conducted with (1) the wavenumber 2 signatures

of gravity wave enhancements prior to the peak SSW and (2) the suppressiona of gravity waves

after the wind reversal.

6.1 Introduction

Gravity wave variations associated with the 2009 SSW are quite dynamic as shown in Figure

3.3. Impacts of these realistic gravity wave variations have never been examined despite the impor-

tant roles of gravity waves in driving atmospheric circulation. In this study, gravity wave influences

on two important atmospheric phenomena—the initiation of SSW anomalies in the mesosphere and

the elevated stratopause—are examined.

As discussed in Chapter 5, the SSW temperature anomalies start in the mesosphere, and

then progress downward to the stratosphere and further to the troposphere. The initiation of the

temperature anomalies in the mesosphere is important to understand atmospheric coupling and

predictions of SSWs. The elevated stratopause is often observed after the strong SSW (e.g., the

2006 NH SSW and the 2009 NH SSW) [Manney et al., 2008, 2009]. The stratopause is normally

located at ∼50–60 km. However, after the strong SSWs, the stratopause seems to be elevated to
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∼80–90 km. This movement of the stratopause is called the elevated stratopause [Manney et al.,

2008, 2009; Siskind et al., 2007; Chandran et al., 2011]. The elevated stratopause likely results

from the changes of gravity wave filtering and the vertical circulation due to the modulations

of background flow associated with SSWs [Siskind et al., 2007, 2010; Chandran et al., 2011] or

planetary waves [Limpasuvan et al., 2011]. Associated with the changes in atmospheric circulation,

anomalies in NOx in the stratosphere have been observed [Randall et al., 2006]. The NOx can

alter stratospheric ozone through catalytic cycle [Randall et al., 2006]. Hence, understanding

the mechanisms of the elevated stratopause is also important to advance our knowledge of ozone

depletion related to NOx transport and atmospheric circulation.

Siskind et al. [2007] proposed a mechanism of the elevated stratopause as the filtering of

orographic gravity waves and tested it with the NOGAPS-ALPHA model that used an orographic

gravity wave parameterization scheme. According to Siskind et al. [2007], during the recovery

phase of SSWs, zonal winds are westward in the stratosphere and eastward in the mesosphere

because the eastward jet recovery starts in the MLT region. Orographic gravity waves are filtered

because of the wind reversal between the troposphere and the lower mesosphere, resulting in the

lack of gravity waves in the MLT (if only orographic gravity waves are considered). During the

normal winter condition, the westward gravity wave forcing in the mesosphere induces the warming

in the mesosphere and upper stratosphere, and cooling in the lower thermosphere and mesosphere

through adiabatic warming and cooling, respectively. On the other hand, during the recovery

phase of SSWs, the westward gravity wave forcing disappears. As a result, temperatures in the

mesosphere and upper stratosphere decrease, and temperatures in the lower thermosphere and

mesosphere increase due to the lack of vertical circulation induced by the westward gravity wave

forcing in the mesosphere. Based on this theory, Siskind et al. [2007] successfully simulated the

elevated stratopause after the 2006 SSW; however, the magnitude of the elevated stratopause was

much weaker than that observed by SABER.

Following Siskind et al. [2007], Siskind et al. [2010] re-examined the elevate stratopause

by NOGAPS-ALPHA with both orographic and non-orographic gravity wave parameterizations.
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The simulations of the elevated stratopause at ∼90 km with non-orographic gravity waves were

improved from results only with orographic gravity waves. Elevated stratopause was also captured

by WACCM climate simulations with both non-orographic and orographic gravity wave parame-

terization scheme [Chandran et al., 2011]. Both Siskind et al. [2010] and Chandran et al. [2011]

concluded that westward gravity wave forcing in the MLT region is responsible for simulating the

magnitude of the elevated stratopause reasonably.

Simulation results by Siskind et al. [2010] and Chandran et al. [2011] are somewhat conflict-

ing with gravity wave observations. HIRDLE satellite observed the suppressions of gravity wave

momentum flux after the 2006 SSW during the period of the elevated stratopause [Wright et al.,

2010]. Thurairajah et al. [2010] also presented the reductions of gravity wave activity observed by

lidar. In additions to observations, Yamashita et al. [2010] (also in Chapter 3 and 4 in this disser-

tation) showed the suppression of gravity waves with the horizontal wavelength larger than ∼150

km when the elevated stratopause occurred in the 2009 SSW using the high-resolution numerical

model. These observations and modeling results seem to be supporting the theory proposed by

Siskind et al. [2007] with suppressions of orographic gravity waves. Therefore, the mechanisms of

the elevated stratopause remain unclear, and this study aims to explain the causes of discrepancies

between GCM simulations and observations by considering the observational filtering and gravity

wave spectra used in the gravity wave parameterization schemes.

For the 2009 SSW, the timing of enhancement and suppression of gravity waves seen in

ECMWF-T799 corresponds to the period of the initiation of downward progressions of the 2009

SSW (precursor of the SSW) and the occurrence of the elevated stratopause, respectively. It is

thus interesting to study the consequences of the coincidence of significant gravity wave variations

with two atmospheric phenomena mentioned above. In this study, realistic gravity wave variations

resolved by ECMWF-T799 are implemented in TIME-GCM. This chapter examines the initiations

of SSWs in the MLT region and the mechanisms of the elevated stratopause. Gravity wave variations

at ∼30–45 km obtained from ECMWF-T799 contain gravity wave filtering and source variations in

the troposphere and in-situ gravity wave source variations in the stratosphere. The in-situ gravity
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wave source variations have never been included in any of the models that were used to examine the

elevated stratopause (e.g., WACCM, TIME-GCM, and NOGAPS-ALPHA). Therefore, this study

provides a new insight of MLT responses to realistic gravity wave source variations.

6.2 Method

The impacts of realistic gravity wave variations are examined through implementing ECMWF-

resolved gravity wave variations in the gravity wave parameterization scheme in TIME-GCM. Two

signatures are implemented in TIME-GCM: (Case 1) wavenumber 2 gravity wave enhancements

prior to wind reversal and (Case 2) suppressions of gravity waves after the peak SSW.

(1) Base Case

The typical gravity wave parameters are used to simulate the 2009 SSW by TIME-GCM.

The lower boundary of TIME-GCM at 10 hPa is specified by the 6-hourly ECMWF data

along with the migrating diurnal and semidiurnal tides from the Global Scale Wave Model

(GSWM). Detailed descriptions of gravity wave parameterization scheme and TIME-GCM

can be found in Chapter 5, Liu and Roble [2002] and references therein. In this study,

spectral width of -90 m/s to 90 m/s and horizontal wavelength of 400 km (based on ECMWF

study) are used.

(2) Case 1

The wavenumber 2 signatures of gravity wave enhancements shown in Figure 6.1 are im-

plemented in TIME-GCM during the period of January 15 to January 23. The normalized

zonal mean momentum flux in Figure 6.1 is averaged over altitude range of 30–45 km. The

weighting function contained wavenumber 2 signatures plotted as the thick gray line in

Figure 6.1 is applied on the intermittency term (efficiency term in TIMEGCM) to simulate

the longitudinal variations. The magnitudes of daily-zonal mean GW-Ep are roughly three

times larger than GW-Ep during the normal winter condition, and the weighting function is
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multiplied by 3 to include the amplifications of gravity waves. This modification is applied

to the latitude range of 30◦-90◦N.

(3) Case 2a

The amplitude of GW-Ep after the 2009 SSW is about 30% of GW-Ep before the 2009 SSW.

Figure 6.1 shows the polar plots of gravity wave activity after the SSW on February 20

with extremely weak gravity wave activities. The efficiency terms used in the TIME-GCM

gravity wave parameterization scheme are multiplied by 0.3 to represent the suppression of

gravity waves. This modification is applied to the latitude range of 30◦–90◦N from January

24 to February 28.

(4) Case 2b

ECMWF-T799 cannot resolve gravity waves that have horizontal wavelength less than

∼150 km. Hence, the suppressions of gravity waves in ECMWF do not mean that all

gravity waves disappeared, but gravity waves with horizontal wavelengths less than ∼150

km can exist. For case 2b, gravity wave horizontal wavelength is reduced from 400 km to

10 km in order to represent gravity waves that cannot be resolved in ECMWF-T799. This

modification is applied to the latitude range of 30◦–90◦N from January 24 to February 28.
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Figure 6.1: Vertical wind from ECMWF-T799 on (top left) January 16 and (bottom left) on
February 20. (Top right) longitudinal variations of normalized momentum flux averaged over
altitude range of 30–45 km, the latitude range of 50◦–90◦N, and January 16–17, 2009 (black solid)
and wavenumber 2 weighting function implemented in TIME-GCM (gray solid).
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6.3 TIME-GCM: Base Case

Figure 6.2 shows zonal-daily mean temperatures in the latitude range of 70◦–75◦N and tem-

perature anomalies from the TIME-GCM base case and SABER observations. Temperature anoma-

lies are estimated by subtracting temperature on January 11 from every day temperature. January

11 is chosen because SABER observation at the northern high latitudes starts on January 11.

Downward shifts of warm temperature region in the stratosphere from ∼60 km to ∼40 km in the

period of day of year (DOY) 11–25 are captured in the TIME-GCM base case simulation and

SABER observations. In addition, the warming regions at ∼80 km (i.e., the elevated stratopause)

in the period of DOY 35–55 are simulated in the TIME-GCM base case as observed by SABER.

However, the magnitudes of the downward shift of warming from 60 km to 40 km on DOY 11–25

and the elevated stratopause on DOY 35–55 are much weaker in the TIME-GCM base case than

those in SABER observations.

Comparing temperature anomalies in Figure 6.2, the general structures of warming in the

stratosphere, cooling in the mesosphere, and warming in the lower thermosphere are simulated

by the TIME-GCM base case and observed by SABER. The characteristics of MLT temperature

anomalies show discrepancies between the TIME-GCM base case and SABER observations, which

can be expected from results in Chapter 5.

Zonal wind and gravity wave forcings are shown in Figure 6.3. Zonal mean zonal winds are

reversed from eastward to westward on January 23 and reversed back to eastward on ∼January

28. Directions of gravity wave forcings vary according to the changes of zonal winds because of

the changes in gravity wave filtering. The recovery of the stratospheric jet after the peak SSW

starts at ∼60–80 km that is ∼20 km higher than the location of the stratospheric jet prior to the

SSW. Owing to the changes of the stratospheric jet, the heights of westward forcings are lifted from

∼65–100 km on DOY 11–15 to ∼80–115 km on DOY 30–55.
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Figure 6.2: (Top) Zonal mean temperatures in the latitude range of 70◦–75◦N and (bottom) temper-
ature anomaly (changes from January 11) for (left) the TIME-GCM base case and (right) SABER
observations for the 2009 SSW.
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Figure 6.3: (Left) Zonal mean zonal wind and (right) gravity wave forcing in the latitude range of
(top) 70◦–75◦N and (bottom) 60◦–70◦N for the 2009 SSW from the TIME-GCM base case. Positive
(negative) indicates the eastward (westward).
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6.4 TIME-GCM: Control Case 1

To understand the impacts of gravity wave enhancements, gravity wave parameterization is

modified based on the longitudinal variations of zonal wavenumber 2 signatures and enhancements

of gravity wave activity (case 1). Figure 6.4 shows the time-variations of zonal-daily mean tempera-

tures in 70◦–75◦N from SABER observation and the TIME-GCM base case and case 1 simulations.

The black box in Figure 6.4 indicates the period that the longitudinal variations and enhancements

are implemented based on ECMWF-T799 results. The magnitudes of temperatures in the altitude

range of 50–70 km in the period of DOY 15–23 are larger in case 1 than that in the base case, and

temperatures in the altitude range of 80–110 km are colder in case 1 than that in the base case.

Temperatures in the stratosphere and in the mesosphere are better simulated by TIME-GCM case

1 than the base case, compared to SABER observations.

Figure 6.5 shows the comparisons of temperature anomalies. Again, the black box in Figure

6.5 indicates the period of modifications of gravity wave parameterization. In the period of DOY

15–23, the cooling in the altitude range of 90–110 km and warming in the altitude range of 65–90

km in case 1 are improved compared to SABER observations. Without gravity wave variations, the

initiation of temperature anomalies (the precursor of SSWs) in the MLT region is not represented

in the TIME-GCM base case. To further quantify the influences of gravity wave enhancements,

the magnitudes of temperature differences between the base case and case 1 are shown in Figure

6.6. The magnitudes of the cooling and warming induced by gravity wave enhancements are ∼10

K in 90–110 km and ∼5–10 K in 40–90 km, respectively. The cooling in the lower thermosphere

and warming in the upper mesosphere observed by SABER in the period of DOY 15–20 are ∼35

K and ∼20 K, respectively. The modifications of gravity wave parameterization in case 1 improve

the cooling simulation by ∼30% and the warming simulation by ∼40%.
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Figure 6.4: Zonal mean temperatures from (left) SABER observations, (middle) the TIME-GCM
base case, and (right) TIME-GCM case 1 in the latitude range of 70◦–75◦N.

Figure 6.5: Zonal mean temperature anomalies from (left) SABER observations, (middle) the
TIME-GCM base case, and (right) TIME-GCM case 1 in the latitude range of 70◦–75◦N.
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Figure 6.6: Differences between case 1 and the base case (case 1 - the base case) in the latitude
range of 70◦–75◦N.
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6.5 TIME-GCM: Control Case 2

In order to understand the impacts of suppressions of gravity waves seen in ECMWF-T799

results, TIME-GCM parameterization is modified as the control case 2a and case 2b discussed in the

method section. Case 2a simply suppresses gravity wave forcing in TIME-GCM. Case 2b replaces

the horizontal wavelength from 400 km to 10 km considering the existence of short-horizontal

wavelength waves that cannot be resolved in ECMWF-T799.

Figure 6.7 illustrates temperatures from SABER observations, the TIME-GCM base case,

case 2a, and case 2b. The black boxes shown in Figure 6.7 indicate the period of gravity wave

modifications in TIME-GCM. Focusing on the elevated stratopause between January 25 (DOY

25) and February 25 (DOY 56), the temperature in the altitude range of ∼70–100 km are ∼250

K in SABER, ∼230 K in the base case, ∼225 K in case 2a, and ∼240 K in case 2b. In case

2a, the magnitudes of warming in 70–90 km and cooling in 90-110 km are weaker than the base

case stimulation. Based on comparisons between SABER and TIME-GCM simulations, TIME-

GCM case 2a with suppressions of gravity waves does not improve the simulation of the elevated

stratopause but deteriorates the elevated stratopause simulation. TIME-GCM case 2b with gravity

waves of 10 km horizontal wavelength provides the best simulation of the elevated stratopause

among three TIME-GCM simulations. The magnitude of the elevated stratopause in case 2b is

close to SABER observations, and the vertical depth of warming region from 60 km to 90 km

around DOY 50–56 are very close to the SABER observations.

To further compare TIME-GCM simulations, the temperature anomalies are shown in Figure

6.8. The magnitudes of warming in the altitude range of 60-90 km above the cooling in the

stratosphere are ∼40 K in SABER observations, ∼10 K in the base case, ∼8 K in case 2a, and ∼20

K in case 2b. Obviously, the warming in the altitude range of 60–90 km in SABER is much warmer

than all of TIME-GCM simulations. However, TIME-GCM case 2b improves the warming in the

altitude range of 60–90 km compared with the base case.
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Figure 6.7: Zonal mean temperatures from (top left) SABER observations, (top right) the TIME-
GCM base case, and (bottom left) TIME-GCM case 2a, and (bottom right) TIME-GCM case 2b
in the latitude range of 70◦–75◦N.
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Figure 6.8: Zonal mean temperature anomalies from (top left) SABER observations, (top right)
the TIME-GCM base case, and (bottom left) TIME-GCM case 2a, and (bottom right) TIME-GCM
case 2b in the latitude range of 70◦–75◦N.
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6.6 Discussion

As discussed in Chapter 5, gravity waves are likely a key to the initiations of temperature

anomalies in the MLT region that leads the downward progressions of SSWs from the mesosphere to

the stratosphere and sometimes further to the troposphere. In order to examine the changes of the

zero-wind line height, Figure 6.9 shows zonal mean zonal wind in the latitude range of 70◦–75◦N.

The red thick lines in Figure 6.9 represent the zero-wind line of zonal winds. The zero-wind line

heights are ∼90 km in the base case and ∼75 km in case 1 from January 16–23. The zonal mean

gravity wave forcings are shown in Figure 6.10. From both Figures 6.9 and 6.10, it is clear that the

zero-wind line is shifted from ∼90 km (the base case) to ∼75 km (case 1) due to the enhancements

of the westward gravity wave forcing from ∼60–90 km in case 1. The increases of westward gravity

wave forcing in case 1 cause the additional upward and downward flow, resulting in the warming

and cooling in the MLT region. The changes in gravity wave forcing and the zero-wind height

also alter planetary wave structure. However, the main contributor to the cooling and warming in

the MLT region is the increase of gravity wave forcing in this case. This study indicates that the

precursors of temperature anomalies prior to the peak SSWs can be strongly tied to the gravity

wave variations.

Suppressions of gravity waves after SSWs have been observed by lidar and HIRDLE satellite

and simulated by ECMWF-T799 [e.g., Wright et al., 2010; Yamashita et al., 2010], conflicting with

model results that require the strong westward gravity wave forcing in MLT region for simulations

of the elevated stratopauses [Siskind et al., 2010; Chandran et al., 2011]. Based on the TIME-GCM

simulations shown in this Chapter, a key of simulating the elevated stratopause is high-frequency

gravity waves that cannot be observed by current satellite instruments and also ECMWF-T799.

These results explain the conflicts between GCM simulations and suppressions of gravity waves

captured by HIRDLE and ECMWF-T799 [Wright et al., 2010; Yamashita et al., 2010].

In TIME-GCM simulations, the elevated stratopause associated with the 2009 SSW is likely

caused by westward gravity wave forcing above the occurrence height of the elevated stratopause,
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Figure 6.9: Zonal mean zonal wind from (left) the TIME-GCM base case and (right) TIME-GCM
case 1 in the latitude range of 70◦-75◦N.

Figure 6.10: Graivity wave forcing from (left) the TIME-GCM base case and (right) TIME-GCM
case 1 in the latitude range of 70◦-75◦N.
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consistent with previous study by Siskind et al. [2010] and Chandran et al. [2011]. The region of

westward gravity wave forcing during the elevated stratopause is shifted upward ∼20 km compared

to the normal winter condition. This is because recovery of eastward jet stream starts at the

upper mesosphere then progress downward to the stratosphere as shown in Figure 6.3. Westward

gravity waves thus propagate to higher altitudes during the period of elevated stratopause. The

changes of altitudes of gravity wave propagation is likely responsible for the elevated stratopause

in TIME-GCM. The gravity waves with short horizontal wavelengths tend to propagate higher

altitude than gravity waves with long horizontal wavelengths, which may also contribute to the

“elevated stratopause generation.

6.7 Conclusions

Responses of the MLT temperature to gravity wave variations are examined by utilizing

both ECMWF-T799 and TIME-GCM models. Two control simulations are conducted with (1) the

enhancements of gravity wave activity prior to the 2009 SSW and (2) the suppressions of gravity

wave activity after the wind reversal. The base case simulation without any gravity wave source

variations captures the stratospheric warming, the cooling in the mesosphere, the warming in the

lower thermosphere, and wind reversal. Gravity wave variations are thus not the main driver of

SSWs as discussed by Matsuno [1971].

SABER observations indicate the cooling in the upper mesosphere and the warming in the

lower mesosphere prior to the peak SSW around January 16–20, which can be considered as the

precursor of the 2009 SSW. These MLT temperature responses prior to the 2009 SSW are not

simulated well by the base case TIME-GCM. The case 1 with enhancements of gravity waves begins

to show the temperature anomalies in the MLT region prior to the peak SSW, resulting from the

enhancements of westward gravity wave forcings in the MLT. Changes in gravity wave forcing

also alter the height of the zero-wind line and planetary wave structures, and the modification of

planetary wave structure slightly contributes to the MLT temperature anomaly prior to the peak

SSWs. However, in this case, temperature changes induced by enhancements of westward gravity
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wave forcing are the main causes of the precursor of SSW in the MLT.

To understand the impacts of the suppressions of gravity waves, a gravity wave parameter-

ization is further modified to suppress the gravity waves with the horizontal wavelength longer

than 150 km and to consider the short-horizontal wavelength (10 km) gravity waves. TIME-GCM

simulation with 10 km horizontal gravity wave wavelength provides the best simulation of the

elevated stratopause among three different TIME-GCM cases. Based on this study, a key of the

elevated stratopause is most likely the high-frequency gravity waves that cannot be resolved in high-

resolution models or observed by current satellites, which explains the conflict between previous

simulations and observations of gravity waves during the period of the elevated stratopause.
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Conclusions and Outlook

7.1 Conclusions

Utilizing the high-resolution ECMWF-T799, TIME-GCM, and GROGRAT models, I have

studied atmospheric coupling through gravity waves during SSW in this dissertaion. The studies

include the following aspects: (1) the temporal, spatial, and spectral variations of gravity waves

during SSWs, (2) the physical mechanisms behind these variations and the in-situ generation mech-

anisms of gravity waves during SSWs, and (3) the roles of gravity waves in atmospheric coupling. A

major finding is the importance of the in-situ excitations of gravity waves by the residual tendency

forcings prior to the 2009 SSW. The increase of in-situ gravity waves sources plays a key role in

initiating the temperature anomalies in the MLT region that progress downward to the stratosphere

and the troposphere later. Advancements made by this dissertation will greatly contribute to the

future development of gravity wave parameterization schemes that include in-situ gravity wave

sources related to the jets. Furthermore, the improvements of knowledge on atmospheric coupling

mechanisms through gravity waves are expected. The answers to the scientific questions asked in

the Introduction (Chapter 1) are in the following:

(1) How do gravity waves vary during the 2009 SSW in the stratosphere and lower

mesosphere?

Gravity wave variations during the 2009 SSW are studied using the high-resolution

ECMWF-T799. ECMWF-T799 is validated with COSMIC/GPS temperature for daily
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and short-term variations associated with the 2009 SSW and with lidar observations for

seasonal variations. The 2009 SSW was the largest in the observational history and occurred

on January 23–24. During the development and the onset of the SSW, the daily-zonal

mean GW-Ep in the stratosphere and the lower mesosphere first increases on January 5 in

coincidence with PW1 growth. Then GW-Ep enhances again on January 15–22 as the PW2

magnifies. Most gravity waves occur at the edge of the polar vortex, and the magnitude

and occurrence of gravity waves correlate well with the location and strength of the polar

vortex that is strongly distorted by planetary wave growth. As the significant planetary

wave disturbances (initially at the lower mesosphere) migrate down to the stratosphere,

strong gravity waves (also initially enhanced at higher altitudes on January 5) gradually

progress downward to the stratosphere around January 22. Downward progression of GW-

Ep and planetary wave enhancement on January 15–22 appears to follow the zero-wind

line. Two gravity wave peaks on January 5 and 15–22 are dominated by 100–800 km

and 400–1600 km bands, respectively, indicating the spectral dependence of the gravity

wave enhancements. All of gravity wave enhancements occur before the wind reversal, and

gravity waves become significantly weak after the 2009 SSW. The overall GW-Ep variations

in ECMWF are confirmed by COSMIC/GPS observations. The combination of ECMWF

and COSMIC/GPS reveals the dependence of gravity wave variations on location, altitude,

time, and spectrum associated with SSWs.

(2) What are the physical mechanisms causing the gravity wave variations during

the 2009 SSW?

The physical mechanisms of gravity wave variations during the 2009 SSW are inves-

tigated with the ECMWF-T799 and the GROGRAT ray-tracing model. The two peaks of

gravity wave activities prior to the peak SSW do not show any significant correlations with

the changes in probabilities of gravity wave propagation from the troposphere to the polar

stratosphere using the GROGRAT ray-tracing model. Instead, two peaks correlate well
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with the increase of the total energy flux between 20 km to 45 km, indicating that in-situ

energy source is responsible for the gravity wave enhancements. Because the Richardson

numbers are larger than 0.25 where the in-situ energy increases occur in ECMWF-T799, the

shear instability is unlikely a cause of the energy increases in the stratosphere for this study.

The in-situ gravity wave excitation is examined utilizing the residual tendency introduced

by Snyder et al. [2009]. The temporal and spatial variations of the residual tendencies

correspond well with the large gravity wave activities. The spatial distributions of residual

tendencies and the magnitude of the stratospheric jet stream suggest that the spontaneous

responses to the residual tendencies can excite the high-frequency gravity waves, consis-

tent with the wave characteristics appeared in ECMWF. Therefore, two peaks of gravity

wave activity are strongly tied to the increase of in-situ gravity wave sources related to the

stratospheric jet structures that is not included in most of gravity wave parameterization

schemes.

The sudden decay of gravity wave activities correlates well with the variations of

probabilities of gravity wave propagation from the troposphere to the stratosphere obtained

from the GROGRAT ray-tracing model. In addition, residual tendencies are smaller after

the wind reversal. These results indicate that decay of gravity waves after wind reversal is

likely due to the changes of gravity wave propagation along with the weakening of in-situ

gravity wave source.

(3) What are the impacts of gravity waves on the MLT during SSWs?

This dissertation examines gravity wave influences on the MLT dynamics, particularly

on the characteristics of cooling and warming in the MLT region, downward progression

of temperature anomalies, and the elevated stratopause through modifying gravity wave

parameters in TIME-GCM associated with SSWs. This study confirms that the height of

gravity wave forcing region is mainly determined by gravity wave amplitude and wavelength,

and the vertical depth is closely tied to the spectral width of gravity wave phase speed. The
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gravity wave forcings control the pattern and strength of residual circulation and thereby

the characteristics of MLT cooling and warming regions. The planetary wave forcings

in the MLT also affect the vertical depth and magnitude of MLT temperature anomalies

through further modifying the residual circulation. These planetary wave forcings are likely

generated in-situ by the gravity wave forcings at high latitudes. Therefore, the mechanisms

of gravity wave controlling the MLT temperature during a SSW are directly through gravity

wave forcing and indirectly through generating planetary waves in-situ.

Capturing the downward progression of temperature anomalies from the mesosphere

to the stratosphere is also dependent on gravity wave parameters in the model. The height

of the zero-wind line at the onset of SSWs is most likely one of the key elements causing

the downward progression of temperature anomalies through modulating the filtering of

gravity waves and also planetary waves. Therefore, our studies suggest the roles of gravity

waves as the following: (1) gravity waves set up the adequate height of the zero-wind

line for planetary and gravity waves to interact with the mean flow at the onset of SSW,

(2) gravity wave forcings accelerate the meridional circulation equatorward and induce

the warming in the lower thermosphere and cooling in the mesosphere, (3) the longitudinal

variations of gravity wave forcing in the MLT caused by planetary waves in the stratosphere

excite secondary planetary waves in the MLT that further modify the MLT circulations.

The TIME-GCM simulations of downward progression and the elevated stratopause are

improved with the realistic gravity wave variations.

Given the sensitivity of MLT response to gravity wave parameters, uncertainties in

gravity wave parameters may be responsible for the discrepancy between models and ob-

servations. The variability of MLT temperature responses to different SSW events may

also reflect the variability in gravity wave source and propagation. Better knowledge of the

gravity wave source and propagation during SSWs is thus critical for correctly simulating

the impact of SSWs on the MLT.
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7.2 Future Work

This dissertation reveals the importance of the in-situ gravity wave excitations and the roles

of gravity waves on atmospheric coupling. The remaining research and possible applications are

discussed here.

(1) The In-Situ Gravity Wave Generations

This dissertation identifies that the increases of the in-situ gravity wave sources

are responsible for gravity wave enhancements prior to the 2009 SSW. However, Wang

and Alexander [2009] argued that the changes in propagations of gravity waves are more

important for the 2008 minor and major SSWs. The relevance of the in-situ wave sources

can vary depending on the type, magnitude, and duration of SSWs. It is thus necessary to

conduct further statistical studies with various SSW events. More case studies of gravity

wave excitations by the residual tendencies are necessary for the development of gravity

wave parameterizations with the in-situ gravity wave sources related to the jet structures.

(2) Impacts of Gravity Waves

Studies of gravity wave impacts on the stratosphere and also the behavior of planetary

waves are not touched in this thesis, but they deserve investigation. This is because Limpa-

suvan et al. [2011] and Birner and Williams [2008] indicated the contributions of gravity

waves to the generations of SSWs, and gravity wave impacts on the lower atmosphere can

be important. Furthermore, it has been shown that the thermosphere and the ionosphere

are affected by the strong lower atmospheric disturbances [Liu et al., 2010; Goncharenko

et al., 2008, 2010; Liu et al., 2011]. The mechanisms of these atmospheric coupling are not

clear, and contributions of longitudinal variations and temporal variations of gravity waves

to these atmospheric coupling deserve further studies.

(3) Long Term Variations of the Impacts of Gravity Wave Variations

The long-term trend of gravity wave variations and their sources can be very im-
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portant in the future. Gravity waves are strongly tied to the tropospheric variations,

such as tropical convections, frontal system, and flow over topography. These sources

are affected by the global climate change. Kawatani et al. [2010] examined gravity

wave changes due to the double CO2 condition with the Center for Climate System Re-

search/National Institute for Environmental Studies/Frontier Research Center for Global

Change (CCSR/NIES/FRCGC) Atmospheric General Circulation Model (AGCM) model

that can resolve gravity waves (horizontal resolution of 1.125◦). Their model has a ca-

pability of resolving QBO without any gravity wave parameterization scheme. Kawatani

et al. [2010] showed the changes of gravity wave momentum fluxes and spectra due to

the changes of atmospheric background wind and temperature related to the double CO2.

Although they did not investigate the impacts of the gravity wave changes on the MLT

region, changes in gravity waves due to climate change may significantly affect the MLT

and the stratosphere. Most of GCMs cannot resolve gravity waves and the feedback of

long-term trends of gravity waves are unknown. Either improvement of the model res-

olutions or development of physically based gravity wave parameterization schemes with

better representation of source spectra are necessary in the future.

(4) Modeling

The high-resolution ECMWF-T799 can resolve wide range of gravity waves; however,

the resolutions of ECMWF-T799 still limit gravity wave study. For example, Limpasuvan

et al. [2011] reported that gravity waves with the horizontal wavelength less than 100

km have the largest impacts on the generations of SSWs. Such small-scale gravity waves

cannot be resolved in ECMWF-T799. In order to fully understand the impacts of gravity

waves, both model resolutions and the height of upper boundary need to be improved.

Furthermore, data handling methods for analyzing enormous amount of date need to be

improved. In this study, I have analyzed the global data with 0.25◦ horizontal resolution

[1440 (longitude) × 720 (latitude) × 91 (vertical) × 24 (hourly)] date. ECMWF-T1279 has
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already upgraded their model resolution to 0.15◦ (15 km), and it will be further improved

in the year followed. Recent simulations with the Nonhydrostatic ICosahedral Atmospheric

Model (NICAM) has horizontal resolution of 3 km, and this model output began to be used

for studying gravity waves [Tsuchiya et al., 2011]. In order to make use of these rich model

outputs, a better date handling process should be developed.

(5) Observations

Gravity wave observations are improved due to the recent advancements of gravity

wave analysis methods using global satellite observations [Ern et al., 2004; Alexander et al.,

2010]. However, observations of the long-term trend of gravity waves and high-frequency

gravity waves are still missing. This dissertation indicates the importance of the high-

frequency gravity waves in the elevated stratopause simulations. In order to confirm these

mechanisms, the high-resolution observations are required, and lidar appears to be a power-

ful tool for these purposes. Network of ground-based lidar or spaceborne lidar observations

along with wind measurements will advance our knowledge.

My master’s thesis research, analyzing the lidar observations made by Dr. Chu and

her team in Antarctica from 1999-2005, revealed the differences in seasonal variations of

gravity waves at Rothera and the South Pole as shown in Figure 2.8 and the impacts of

gravity waves on PMCs [Yamashita et al., 2009; Chu et al., 2009]. Although gravity waves

in summer are important for controlling the brightness and occurrences of PMCs, sources

of gravity waves in summer are still unclear. For example, orographic gravity waves are

usually filtered by the wind reversal in the lower stratosphere in summer, and the in-situ

gravity wave excitations by the stratospheric jet are weak because of the lack of the strong

polar vortex in the summer stratosphere.

In addition, at the South Pole, the topography is relatively flat. The South Pole locates

well inside the polar vortex, resulting in the weaker jet related gravity waves. Hence, grav-

ity wave sources at the South Pole are still unknown. Li et al. [2009] presented that gravity
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waves at the South Pole probably originated in the tropical region and propagated to the

polar region. However, clear observational evidences of such propagation have not been

presented. Therefore, gravity wave sources in Antarctica deserve future studies. Combina-

tions of high-resolution lidar observations with the high-resolution numerical models, such

as ECMWF-T799, will help reveal the distributions of gravity wave sources in Antarctica

and globally.
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Appendix A

Comparison of Gravity Wave Variations during the 2009 and the 2010 SSWs

The 2009 SSW is caused by planetary wave wavenumber 2 and the 2010 SSW is caused by

planetary wavenumber 1. Here, gravity wave variations are compared between the 2009 SSW and

the 2010 SSW as the preliminary result of further statistical study. Figures A.1 and A.2 show

temperature, temperature anomaly, and zonal wind in 2009 and 2010, respectively. Temperature

anomalies for the 2009 and 2010 SSWs are estimated by subtracting temperature on January 1,

2009 and 2010, respectively.

Wind reversal at 50 km occur on ∼January 21 and at 30 km on ∼January 23 in 2009.

Temperature increases more than 50 K on January 23 around 30 km for the 2009 SSW. For the

2010 SSW, the stratospheric temperature increases ∼40K starting around January 20, but the wind

reversal at 30 km occurs on January 30, 2010. The magnitudes of SSW are larger in 2009 than in

2010, but the durations of SSW are longer in 2010 than in 2009.

Figures A.3 and A.4 show the divergence of EP flux and residual circulations. The episodes of

multiple EP flux divergence exist from January 15 to January 30 in 2010. In contrast to 2010, one

large EP flux divergence occurs around January 20 in 2009. These results indicate the differences

between the 2009 SSW and the 2010 SSW.

Figures A.5 and A.6 illustrate the time variations of GW-Ep in 2009 and 2010, respectively.

In 2009, GW-Ep peaks on around January 5 and January 16 as studied in Chapters 3 and 4. The

results are slightly different because of the different latitude. GW-Ep peaks on around January 23

in 2010. The peak magnitude of GW-Ep associated with the 2010 SSW is weaker than that during
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Figure A.1: Zonal mean (top) zonal wind at 60◦N, (middle) temperature at 80◦N, (bottom) tem-
perature anomaly (change) at 80◦N associated with the 2009 SSW.
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Figure A.2: Zonal mean (top) zonal wind at 60◦N, (middle) temperature at 80◦N, (bottom) tem-
perature anomaly (change) at 80◦N associated with the 2010 SSW.
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Figure A.3: (top) EP flux divergence, (middle) vertical residual circulation, and (bottom) merid-
ional residual circulation calculated with planetary wavenumber 1-4 at 67◦N during the 2009 SSW.
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Figure A.4: (top) EP flux divergence, (middle) vertical residual circulation, and (bottom) merid-
ional residual circulation calculated with planetary wavenumber 1-4 at 67◦N during the 2010 SSW.
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Figure A.5: Variations of daily-zonal mean GW-Ep at 70◦N associated with the 2009 SSW.

Figure A.6: Variations of daily-zonal mean GW-Ep at 70◦N associated with the 2010 SSW.
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the 2009 SSW. In 2010, multiple peaks of GW-Ep are captured on January 10, 20, 25, and 30,

corresponding to the large EP flux divergences.

Summary

GW-Ep variations in 2010 also correspond to the planetary wave enhancements. However, the

magnitude of GW-Ep is about factor of two smaller than the peak magnitude of GW-Ep in 2009.

Future investigations should be directed towards the studies of characteristics of gravity waves and

their potential generation mechanisms.
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